Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2014

01.10.2014

Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering

verfasst von: Fwu-Hsing Liu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, microhydroxyapatite and nanosilica sol were used as the raw materials for fabrication of bioceramic bone scaffold using selective laser sintering technology in a self-developed 3D Printing apparatus. When the fluidity of ceramic slurry is matched with suitable laser processing parameters, a controlled pore size of porous bone scaffold can be fabricated under a lower laser energy. Results shown that the fabricated scaffolds have a bending strength of 14.1 MPa, a compressive strength of 24 MPa, a surface roughness of 725 nm, a pore size of 750 μm, an apparent porosity of 32%, and a optical density of 1.8. Results indicate that the mechanical strength of the scaffold can be improved after heat treatment at 1200 °C for 2 h, while simultaneously increasing surface roughness conducive to osteoprogenitor cell adhesion. MTT method and SEM observations confirmed that bone scaffolds fabricated under the optimal manufacturing process possess suitable biocompatibility and mechanical properties, allowing smooth adhesion and proliferation of osteoblast-like cells. Therefore, they have great potential for development in the field of tissue engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. Karageorgiou and D. Kaplan, Review: Porosity of 3D Biomaterial Scaffolds and Osteogenesis, Biomaterials, 2005, 26, p 5474–5491CrossRef V. Karageorgiou and D. Kaplan, Review: Porosity of 3D Biomaterial Scaffolds and Osteogenesis, Biomaterials, 2005, 26, p 5474–5491CrossRef
2.
Zurück zum Zitat J.E. Tercero, S. Namin, D. Lahiri, K. Balani, N. Tsoukias, and A. Agarwal, Effect of Carbon Nanotube and Aluminum Oxide Addition on Plasma-Sprayed Hydroxyapatite Coating’s Mechanical Properties and Biocompatibility, Mater. Sci. Eng. C, 2009, 29, p 2195–2202CrossRef J.E. Tercero, S. Namin, D. Lahiri, K. Balani, N. Tsoukias, and A. Agarwal, Effect of Carbon Nanotube and Aluminum Oxide Addition on Plasma-Sprayed Hydroxyapatite Coating’s Mechanical Properties and Biocompatibility, Mater. Sci. Eng. C, 2009, 29, p 2195–2202CrossRef
3.
Zurück zum Zitat Z. Badran, P. Pilet, E. Verron, J.M. Bouler, P. Weiss, G. Grimandi, J. Guicheux, and A. Soueidan, Assay of In Vitro Osteoclast Activity on Dentine, and Synthetic Calcium Phosphate Bone Substitutes, J. Mater. Sci., 2012, 23, p 797–803 Z. Badran, P. Pilet, E. Verron, J.M. Bouler, P. Weiss, G. Grimandi, J. Guicheux, and A. Soueidan, Assay of In Vitro Osteoclast Activity on Dentine, and Synthetic Calcium Phosphate Bone Substitutes, J. Mater. Sci., 2012, 23, p 797–803
4.
Zurück zum Zitat S.V. Dorozhkin, Bioceramics of Calcium Orthophosphates, Biomaterials, 2010, 31, p 1465–1485CrossRef S.V. Dorozhkin, Bioceramics of Calcium Orthophosphates, Biomaterials, 2010, 31, p 1465–1485CrossRef
5.
Zurück zum Zitat C.C. Silva, D. Thomazini, A.G. Pinheiro, J.F. Lanciotti, J.M. Sasaki, J.C. Góes, and A.S.B. Sombra, Optical Properties of Hydroxyapatite Obtained by Mechanical Alloying, J. Phys. Chem. Solids, 2002, 63, p 1745–1757CrossRef C.C. Silva, D. Thomazini, A.G. Pinheiro, J.F. Lanciotti, J.M. Sasaki, J.C. Góes, and A.S.B. Sombra, Optical Properties of Hydroxyapatite Obtained by Mechanical Alloying, J. Phys. Chem. Solids, 2002, 63, p 1745–1757CrossRef
6.
Zurück zum Zitat L.M. Ren, M. Todo, T. Arahira, H. Yoshikawa, and A. Myoui, A Comparative Biomechanical Study of Bone Ingrowth in Two Porous Hydroxyapatite Bioceramics, Appl. Surf. Sci., 2012, 262, p 81–88CrossRef L.M. Ren, M. Todo, T. Arahira, H. Yoshikawa, and A. Myoui, A Comparative Biomechanical Study of Bone Ingrowth in Two Porous Hydroxyapatite Bioceramics, Appl. Surf. Sci., 2012, 262, p 81–88CrossRef
7.
Zurück zum Zitat M. Mastrogiacomo, S. Scaglione, R. Martinetti, L. Dolcini, F. Beltrame, R. Cancedda, and R. Quarto, Role of Scaffold Internal Structure on In Vivo Bone Formation in Macroporous Calcium Phosphate Bioceramics, Biomaterials, 2006, 27, p 3230–3237CrossRef M. Mastrogiacomo, S. Scaglione, R. Martinetti, L. Dolcini, F. Beltrame, R. Cancedda, and R. Quarto, Role of Scaffold Internal Structure on In Vivo Bone Formation in Macroporous Calcium Phosphate Bioceramics, Biomaterials, 2006, 27, p 3230–3237CrossRef
8.
Zurück zum Zitat R. Murugan and S. Ramakrishna, Nano-Featured Scaffolds for Tissue Engineering: A Review of Spinning Methodologies, Tissue Eng., 2006, 12, p 435–447CrossRef R. Murugan and S. Ramakrishna, Nano-Featured Scaffolds for Tissue Engineering: A Review of Spinning Methodologies, Tissue Eng., 2006, 12, p 435–447CrossRef
9.
Zurück zum Zitat B. Müller, H. Deyhle, S. Lang, G. Schulz, T. Bormann, F.C. Fierz, and S.E. Hieber, Three-Dimensional Registration of Tomography Data for Quantification in Biomaterials Science, Int. J. Mater. Res., 2012, 103, p 242–249CrossRef B. Müller, H. Deyhle, S. Lang, G. Schulz, T. Bormann, F.C. Fierz, and S.E. Hieber, Three-Dimensional Registration of Tomography Data for Quantification in Biomaterials Science, Int. J. Mater. Res., 2012, 103, p 242–249CrossRef
10.
Zurück zum Zitat J. Wu, X. Wang, X. Zhao, C. Zhang, and B. Gao, A Study on the Fabrication Method of Removable Partial Denture Framework by Computer-Aided Design and Rapid Prototyping, Rapid Prototyp. J., 2012, 18, p 318–323CrossRef J. Wu, X. Wang, X. Zhao, C. Zhang, and B. Gao, A Study on the Fabrication Method of Removable Partial Denture Framework by Computer-Aided Design and Rapid Prototyping, Rapid Prototyp. J., 2012, 18, p 318–323CrossRef
11.
Zurück zum Zitat F.H. Liu, Synthesis of Bioceramic Scaffolds for Bone Tissue Engineering by Rapid Prototyping Technique, J. Sol-Gel. Sci. Technol., 2012, 64, p 704–710CrossRef F.H. Liu, Synthesis of Bioceramic Scaffolds for Bone Tissue Engineering by Rapid Prototyping Technique, J. Sol-Gel. Sci. Technol., 2012, 64, p 704–710CrossRef
12.
Zurück zum Zitat T. Billiet, M. Vandenhaute, J. Schelfhout, S.V. Vlierberghe, and P. Dubruel, A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering, Biomaterials, 2012, 33, p 6020–6041CrossRef T. Billiet, M. Vandenhaute, J. Schelfhout, S.V. Vlierberghe, and P. Dubruel, A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering, Biomaterials, 2012, 33, p 6020–6041CrossRef
13.
Zurück zum Zitat S. Lohfeld, S. Cahill, and V. Barron, Fabrication, Mechanical and In Vivo Performance of Polycaprolactone/Tricalcium Phosphate Composite Scaffolds, Acta Biomater., 2012, 8, p 3446–3456CrossRef S. Lohfeld, S. Cahill, and V. Barron, Fabrication, Mechanical and In Vivo Performance of Polycaprolactone/Tricalcium Phosphate Composite Scaffolds, Acta Biomater., 2012, 8, p 3446–3456CrossRef
14.
Zurück zum Zitat S. Eshraghi and S. Das, Micromechanical Finite-Element Modeling and Experimental Characterization of the Compressive Mechanical Properties of Polycaprolactone-Hydroxyapatite Composite Scaffolds Prepared by Selective Laser Sintering for Bone Tissue Engineering, Acta Biomater., 2012, 8, p 3138–3143CrossRef S. Eshraghi and S. Das, Micromechanical Finite-Element Modeling and Experimental Characterization of the Compressive Mechanical Properties of Polycaprolactone-Hydroxyapatite Composite Scaffolds Prepared by Selective Laser Sintering for Bone Tissue Engineering, Acta Biomater., 2012, 8, p 3138–3143CrossRef
15.
Zurück zum Zitat S. Eosoly, N.E. Vrana, S. Lohfeld, M. Hindie, and L. Looney, Interaction of Cell Culture with Composition Effects on the Mechanical Properties of Polycaprolactone-Hydroxyapatite Scaffolds Fabricated Via Selective Laser Sintering, Mater. Sci. Eng. C, 2012, 32, p 2250–2257CrossRef S. Eosoly, N.E. Vrana, S. Lohfeld, M. Hindie, and L. Looney, Interaction of Cell Culture with Composition Effects on the Mechanical Properties of Polycaprolactone-Hydroxyapatite Scaffolds Fabricated Via Selective Laser Sintering, Mater. Sci. Eng. C, 2012, 32, p 2250–2257CrossRef
16.
Zurück zum Zitat B. Duan, W.L. Cheung, and M. Wang, Optimized Fabrication of Ca-P/PHBV Nanocomposite Scaffolds Via Selective Laser Sintering for Bone Tissue Engineering, Biofabrication, 2011, 3, p 1CrossRef B. Duan, W.L. Cheung, and M. Wang, Optimized Fabrication of Ca-P/PHBV Nanocomposite Scaffolds Via Selective Laser Sintering for Bone Tissue Engineering, Biofabrication, 2011, 3, p 1CrossRef
17.
Zurück zum Zitat K.C.R. Kolan, M.C. Leu, and G.E. Hilmas, Fabrication of 13-93 Bioactive Glass Scaffolds for Bone Tissue Engineering Using Indirect Selective Laser Sintering, Biofabrication, 2011, 3, p 2CrossRef K.C.R. Kolan, M.C. Leu, and G.E. Hilmas, Fabrication of 13-93 Bioactive Glass Scaffolds for Bone Tissue Engineering Using Indirect Selective Laser Sintering, Biofabrication, 2011, 3, p 2CrossRef
18.
Zurück zum Zitat C. Shuai, C. Gao, Y. Nie, H. Hu, Y. Zhou, and S. Peng, Structure and Properties of Nano-Hydroxypatite Scaffolds for Bone Tissue Engineering with a Selective Laser Sintering System, Nanotechnology, 2011, 22, p 28CrossRef C. Shuai, C. Gao, Y. Nie, H. Hu, Y. Zhou, and S. Peng, Structure and Properties of Nano-Hydroxypatite Scaffolds for Bone Tissue Engineering with a Selective Laser Sintering System, Nanotechnology, 2011, 22, p 28CrossRef
19.
Zurück zum Zitat F.H. Liu, Y.K. Shen, and J.L. Lee, Selective Laser Sintering of a Hydroxyapatite Silica Scaffold on Cultured MG63 Osteoblasts In Vitro, Int. J. Precis. Eng. Manuf., 2012, 13, p 439–444CrossRef F.H. Liu, Y.K. Shen, and J.L. Lee, Selective Laser Sintering of a Hydroxyapatite Silica Scaffold on Cultured MG63 Osteoblasts In Vitro, Int. J. Precis. Eng. Manuf., 2012, 13, p 439–444CrossRef
20.
Zurück zum Zitat F.H. Liu and Y.S. Liao, Fabrication Inner Complex Ceramic Part by Selective Laser Gelling, J. Eur. Ceram. Soc., 2010, 30, p 3283–3289CrossRef F.H. Liu and Y.S. Liao, Fabrication Inner Complex Ceramic Part by Selective Laser Gelling, J. Eur. Ceram. Soc., 2010, 30, p 3283–3289CrossRef
21.
Zurück zum Zitat J. Zeltinger, Effect of Pore Size and Void Fraction on Cellular Adhesion, Proliferation, and Matrix Deposition, Tissue Eng., 2001, 7, p 557–572CrossRef J. Zeltinger, Effect of Pore Size and Void Fraction on Cellular Adhesion, Proliferation, and Matrix Deposition, Tissue Eng., 2001, 7, p 557–572CrossRef
22.
Zurück zum Zitat J.B. Nebe, M. Cornelsen, A. Quade, V. Weissmann, F. Kunz, S. Ofe, K. Schroeder, B. Finke, H. Seitz, and C. Bergemann, Osteoblast Behavior In Vitro in Porous Calcium Phosphate Composite Scaffolds, Surface Activated with a Cell Adhesive Plasma Polymer Layer, Mater. Sci. Forum, 2012, 706–709, p 566–571CrossRef J.B. Nebe, M. Cornelsen, A. Quade, V. Weissmann, F. Kunz, S. Ofe, K. Schroeder, B. Finke, H. Seitz, and C. Bergemann, Osteoblast Behavior In Vitro in Porous Calcium Phosphate Composite Scaffolds, Surface Activated with a Cell Adhesive Plasma Polymer Layer, Mater. Sci. Forum, 2012, 706–709, p 566–571CrossRef
23.
Zurück zum Zitat I. Zein, Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications, Biomaterials, 2002, 23, p 1169–1185CrossRef I. Zein, Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications, Biomaterials, 2002, 23, p 1169–1185CrossRef
24.
Zurück zum Zitat Z. Xiong, Fabrication of Porous Scaffolds for Bone Tissue Engineering Via Low Temperature Deposition, Scripta Mater., 2001, 45, p 773–779CrossRef Z. Xiong, Fabrication of Porous Scaffolds for Bone Tissue Engineering Via Low Temperature Deposition, Scripta Mater., 2001, 45, p 773–779CrossRef
25.
Zurück zum Zitat B. Ma, Knowledge Enterprise: Intelligent Strategies in Product Design, Manuf. Manag., 2006, 207, p 710–716 B. Ma, Knowledge Enterprise: Intelligent Strategies in Product Design, Manuf. Manag., 2006, 207, p 710–716
26.
Zurück zum Zitat M.Y. Lee, S.W. Liu, J.P. Chen, H.T. Liao, W.W. Tsai, and H.C. Wang, In Vitro Experiments on Laser Sintered Porous PCL Scaffolds with Polymer Hydrogel for Bone Repair, J. Mech. Med. Biol., 2011, 11, p 983–992CrossRef M.Y. Lee, S.W. Liu, J.P. Chen, H.T. Liao, W.W. Tsai, and H.C. Wang, In Vitro Experiments on Laser Sintered Porous PCL Scaffolds with Polymer Hydrogel for Bone Repair, J. Mech. Med. Biol., 2011, 11, p 983–992CrossRef
27.
Zurück zum Zitat J.M. Williams, Bone Tissue Engineering Using Polycaprolactone Scaffold Fabricated Via Selective Laser Sintering, Biomaterials, 2005, 26, p 4817–4827CrossRef J.M. Williams, Bone Tissue Engineering Using Polycaprolactone Scaffold Fabricated Via Selective Laser Sintering, Biomaterials, 2005, 26, p 4817–4827CrossRef
28.
Zurück zum Zitat G.A. Fielding, A. Bandyopadhyay, and S. Bose, Effects of Silica and Zinc Oxide Doping on Mechanical and Biological Properties of 3D Printed Tricalcium Phosphate Tissue Engineering Scaffolds, Dent. Mater., 2012, 28, p 113–122CrossRef G.A. Fielding, A. Bandyopadhyay, and S. Bose, Effects of Silica and Zinc Oxide Doping on Mechanical and Biological Properties of 3D Printed Tricalcium Phosphate Tissue Engineering Scaffolds, Dent. Mater., 2012, 28, p 113–122CrossRef
29.
Zurück zum Zitat A.S. Hamizah, M. Mariatti, R. Othman, M. Kawashita, and A.R.N. Hayati, Mechanical and Thermal Properties of Polymethylmethacrylate Bone Cement Composites Incorporated with Hydroxyapatite and Glass-Ceramic Fillers, J. Appl. Polym. Sci., 2012, 125, p 661–669CrossRef A.S. Hamizah, M. Mariatti, R. Othman, M. Kawashita, and A.R.N. Hayati, Mechanical and Thermal Properties of Polymethylmethacrylate Bone Cement Composites Incorporated with Hydroxyapatite and Glass-Ceramic Fillers, J. Appl. Polym. Sci., 2012, 125, p 661–669CrossRef
30.
Zurück zum Zitat D. Zhao, W. Huang, and M.N. Rahaman, Mechanism for Converting Al2O3-Containing Borate Glass to Hydroxyapatite in Aqueous Phosphate Solution, Acta Biomater., 2009, 5, p 1265–1273CrossRef D. Zhao, W. Huang, and M.N. Rahaman, Mechanism for Converting Al2O3-Containing Borate Glass to Hydroxyapatite in Aqueous Phosphate Solution, Acta Biomater., 2009, 5, p 1265–1273CrossRef
31.
Zurück zum Zitat M.E. Morks, Fabrication and Characterization of Plasma-Sprayed HA/SiO2 Coatings for Biomedical Application, J. Mech. Behav. Biomed., 2008, 1, p 105–111CrossRef M.E. Morks, Fabrication and Characterization of Plasma-Sprayed HA/SiO2 Coatings for Biomedical Application, J. Mech. Behav. Biomed., 2008, 1, p 105–111CrossRef
32.
Zurück zum Zitat ASTM C1161, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, American Society for Testing and Materials, Barr Harbor, PA, 1996. ASTM C1161, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, American Society for Testing and Materials, Barr Harbor, PA, 1996.
33.
Zurück zum Zitat C.F.L. Santos, A.P. Silva, L. Lopes, I. Pires, and I.J. Correia, Design and Production of Sintered β-Tricalcium Phosphate 3D Scaffolds for Bone Tissue Regeneration, Mater. Sci. Eng. C, 2012, 32, p 1293–1298CrossRef C.F.L. Santos, A.P. Silva, L. Lopes, I. Pires, and I.J. Correia, Design and Production of Sintered β-Tricalcium Phosphate 3D Scaffolds for Bone Tissue Regeneration, Mater. Sci. Eng. C, 2012, 32, p 1293–1298CrossRef
34.
Zurück zum Zitat B. Rai, J.L. Lin, Z.X.H. Lim, R.E. Guldberg, D.W. Hutmacher, and S.M. Cool, Differences Between In Vitro Viability and Differentiation and In Vivo Bone-Forming Efficacy of Human Mesenchymal Stem Cells Cultured on PCL-TCP Scaffolds, Biomaterials, 2010, 31, p 7960–7970CrossRef B. Rai, J.L. Lin, Z.X.H. Lim, R.E. Guldberg, D.W. Hutmacher, and S.M. Cool, Differences Between In Vitro Viability and Differentiation and In Vivo Bone-Forming Efficacy of Human Mesenchymal Stem Cells Cultured on PCL-TCP Scaffolds, Biomaterials, 2010, 31, p 7960–7970CrossRef
35.
Zurück zum Zitat L. Shor, S. Guceri, X. Wen, M. Gandhi, and W. Sun, Fabrication of Three-Dimensional Polycaprolactone/Hydroxyapatite Tissue Scaffolds and Osteoblast-Scaffold Interactions In Vitro, Biomaterials, 2007, 28, p 5291–5297CrossRef L. Shor, S. Guceri, X. Wen, M. Gandhi, and W. Sun, Fabrication of Three-Dimensional Polycaprolactone/Hydroxyapatite Tissue Scaffolds and Osteoblast-Scaffold Interactions In Vitro, Biomaterials, 2007, 28, p 5291–5297CrossRef
36.
Zurück zum Zitat D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos, and Y.F. Missirlis, Effect of Surface Roughness of Hydroxyapatite on Human Bone Marrow Cell Adhesion, Proliferation, Differentiation and Detachment Strength, Biomaterials, 2001, 22, p 87–96CrossRef D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos, and Y.F. Missirlis, Effect of Surface Roughness of Hydroxyapatite on Human Bone Marrow Cell Adhesion, Proliferation, Differentiation and Detachment Strength, Biomaterials, 2001, 22, p 87–96CrossRef
37.
Zurück zum Zitat F.H. Liu, Synthesis of Biomedical Composite Scaffolds by Laser Sintering: Mechanical Properties and In Vitro Bioactivity Evaluation, Appl. Surf. Sci., 2014, 297, p 1–8CrossRef F.H. Liu, Synthesis of Biomedical Composite Scaffolds by Laser Sintering: Mechanical Properties and In Vitro Bioactivity Evaluation, Appl. Surf. Sci., 2014, 297, p 1–8CrossRef
Metadaten
Titel
Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering
verfasst von
Fwu-Hsing Liu
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2014
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1142-1

Weitere Artikel der Ausgabe 10/2014

Journal of Materials Engineering and Performance 10/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.