Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2015

01.08.2015

Mechanical Properties and Corrosion Behavior of CeO2 and SiC Incorporated Al5083 Alloy Surface Composites

verfasst von: M. Amra, Khalil Ranjbar, R. Dehmolaei

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this investigation, nano-sized cerium oxide (CeO2) and silicon carbide (SiC) particles were stirred and mixed into the surface of an Al5083 alloy rolled plate using friction stir processing (FSP) to form a surface nano-composite layer. For this purpose, various volume ratios of the reinforcements either separately or in the combined form were packed into a pre-machined groove on the surface of the plate. Microstructural features, mechanical properties, and corrosion behavior of the resultant surface composites were determined. Microstructural analysis, optical microscopy and scanning electron microscopy, showed that reinforcement particles were fairly dispersed inside the stir zone and grain refinement was gained. Compared with the base alloy, all of the FSP composites showed higher hardness and tensile strength values with the maximum being obtained for the composite containing 100% SiC particles, i.e., Al5083/SiC. The corrosion behavior of the samples was studied by conducting potentiodynamic polarization tests and assessed in terms of corrosion potential, pitting potential, and passivation range. The result shows a significant increase in corrosion resistance of the base alloy; i.e., the longest passivation range when CeO2 alone was incorporated into the surface by acting as cathodic inhibitors. Composites reinforced with SiC particles exhibited lower pitting resistance due to the formation of microgalvanic couples between cathodic SiC particles and anodic aluminum matrix. The study was aimed to fabricate metal matrix surface composites with improved hardness, tensile strength, and corrosion resistance by the incorporation of CeO2 and SiC reinforcement particles into the surface of Al5083 base alloy. Optimum mechanical properties and corrosion resistance were obtained for the FSP composite Al5083/(75%CeO2 + 25%SiC). In this particular FSP composite, hardness and tensile strength were increased by 30, and 14%, respectively, and passivation range was increased to 0.19 V/SCE compared to the base alloy with no passivation range.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.W. Bray, Aluminum Mill and Engineered Wrought Products, Properties and Selection: Nonferrous Alloys and Special Purpose Materials, ASM Handbook, Vol 2, ASM International, Materials Park, 1999, p 118–360 J.W. Bray, Aluminum Mill and Engineered Wrought Products, Properties and Selection: Nonferrous Alloys and Special Purpose Materials, ASM Handbook, Vol 2, ASM International, Materials Park, 1999, p 118–360
2.
Zurück zum Zitat R.S. Mishra, Z.Y. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341, p 307–310CrossRef R.S. Mishra, Z.Y. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341, p 307–310CrossRef
3.
Zurück zum Zitat D.B. Miracle, Metal Matrix Composites—From Science to Technological Significance, Compos. Sci. Technol., 2005, 65, p 2526–2540CrossRef D.B. Miracle, Metal Matrix Composites—From Science to Technological Significance, Compos. Sci. Technol., 2005, 65, p 2526–2540CrossRef
4.
Zurück zum Zitat J. Gandra, R. Miranda, P. Vilac, A. Velhinho, and J. Pamies, Teixeira, Functionally Graded Materials Produced by Friction Stir Processing, J. Mater. Process. Technol., 2011, 211, p 1659–1668CrossRef J. Gandra, R. Miranda, P. Vilac, A. Velhinho, and J. Pamies, Teixeira, Functionally Graded Materials Produced by Friction Stir Processing, J. Mater. Process. Technol., 2011, 211, p 1659–1668CrossRef
5.
Zurück zum Zitat R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy, Scripta Mater., 2000, 42, p 163–168CrossRef R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy, Scripta Mater., 2000, 42, p 163–168CrossRef
6.
Zurück zum Zitat R.S. Mishra and M.W. Mahoney, Friction Stir Processing: A New Grain Refinement Technique to Achieve High Strain Rate Superplasticity in Commercial Alloys, Mater. Sci. Forum, 2001, 357–359, p 507–514CrossRef R.S. Mishra and M.W. Mahoney, Friction Stir Processing: A New Grain Refinement Technique to Achieve High Strain Rate Superplasticity in Commercial Alloys, Mater. Sci. Forum, 2001, 357–359, p 507–514CrossRef
7.
Zurück zum Zitat R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78CrossRef R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78CrossRef
8.
Zurück zum Zitat S. Soleymani, A. Abdollah-zadeh, and S.A. Alidokht, Microstructural and Tribological Properties of Al5083 Based Surface Hybrid Composite Produced by Friction Stir Processing, Wear, 2012, 278–279, p 41–47CrossRef S. Soleymani, A. Abdollah-zadeh, and S.A. Alidokht, Microstructural and Tribological Properties of Al5083 Based Surface Hybrid Composite Produced by Friction Stir Processing, Wear, 2012, 278–279, p 41–47CrossRef
9.
Zurück zum Zitat A. Mostafapour Asl and S.T. Khandani, Role of Hybrid Ratio in Microstructural, Mechanical and Sliding Wear Properties of the Al5083/Graphite/Al2O3 a Surface Hybrid Nano Composite Fabricated Via Friction Stir Processing Method, Mater. Sci. Eng. A, 2013, 559, p 549–557CrossRef A. Mostafapour Asl and S.T. Khandani, Role of Hybrid Ratio in Microstructural, Mechanical and Sliding Wear Properties of the Al5083/Graphite/Al2O3 a Surface Hybrid Nano Composite Fabricated Via Friction Stir Processing Method, Mater. Sci. Eng. A, 2013, 559, p 549–557CrossRef
10.
Zurück zum Zitat S. Shahraki, S. Khorasani, R.A. Behnagh, Y. Fotouhi, and H. Bisadi, Producing of AA5083/ZrO2 Nanocomposite by Friction Stir Processing (FSP), Metall. Mater. Trans. B, 2013, 44, p 1546–1553CrossRef S. Shahraki, S. Khorasani, R.A. Behnagh, Y. Fotouhi, and H. Bisadi, Producing of AA5083/ZrO2 Nanocomposite by Friction Stir Processing (FSP), Metall. Mater. Trans. B, 2013, 44, p 1546–1553CrossRef
11.
Zurück zum Zitat Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, and M. Fukusumi, Fullerene/Al5083 Composites Fabricated by Material Flow During Friction Stir Processing, Compos. A, 2007, 38, p 2097–2101CrossRef Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, and M. Fukusumi, Fullerene/Al5083 Composites Fabricated by Material Flow During Friction Stir Processing, Compos. A, 2007, 38, p 2097–2101CrossRef
12.
Zurück zum Zitat K.T. Huang, T.S. Lui, and L.H. Chen, Effect of Microstructural Features on the Tensile Properties and Vibration Fracture Resistance of Friction Stirred 5083 Alloy, Alloys Compd., 2011, 509, p 7466–7472CrossRef K.T. Huang, T.S. Lui, and L.H. Chen, Effect of Microstructural Features on the Tensile Properties and Vibration Fracture Resistance of Friction Stirred 5083 Alloy, Alloys Compd., 2011, 509, p 7466–7472CrossRef
13.
Zurück zum Zitat N. Yuvaraj, S. Aravindanb, and Vipin, Fabrication of Al5083/B4C Surface Composite by Friction Stir Processing and Its Tribological Characterization, J. Mater. Res. Technol., 2015, in press N. Yuvaraj, S. Aravindanb, and Vipin, Fabrication of Al5083/B4C Surface Composite by Friction Stir Processing and Its Tribological Characterization, J. Mater. Res. Technol., 2015, in press
14.
Zurück zum Zitat E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi, and K. Ikeuchi, Wear Characteristics of Surface-Hybrid-MMCs Layer Fabricated on Aluminum Plate by Friction Stir Processing, Wear, 2010, 268, p 1111–1121CrossRef E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi, and K. Ikeuchi, Wear Characteristics of Surface-Hybrid-MMCs Layer Fabricated on Aluminum Plate by Friction Stir Processing, Wear, 2010, 268, p 1111–1121CrossRef
15.
Zurück zum Zitat A. Kurta, I. Uygur, and E. Cete, Surface Modification of Aluminum by Friction Stir Processing, J. Mater. Process. Technol., 2011, 211, p 313–317CrossRef A. Kurta, I. Uygur, and E. Cete, Surface Modification of Aluminum by Friction Stir Processing, J. Mater. Process. Technol., 2011, 211, p 313–317CrossRef
16.
Zurück zum Zitat J. Qu, H. Xu, Z.H. Feng, D. AlanFrederick, L. An, and H. Heinrich, Improving the Tribological Characteristics of Aluminum 6061 Alloy by Surface Compositing with Sub-Micro-Size Ceramic Particles Via Friction Stir Processing, Wear, 2011, 271, p 1940–1945CrossRef J. Qu, H. Xu, Z.H. Feng, D. AlanFrederick, L. An, and H. Heinrich, Improving the Tribological Characteristics of Aluminum 6061 Alloy by Surface Compositing with Sub-Micro-Size Ceramic Particles Via Friction Stir Processing, Wear, 2011, 271, p 1940–1945CrossRef
17.
Zurück zum Zitat R. Bauri and M.K. Surappa, Sliding Wear Behavior of Al-Li-SiC Composites, Wear, 2008, 265, p 1756–1766CrossRef R. Bauri and M.K. Surappa, Sliding Wear Behavior of Al-Li-SiC Composites, Wear, 2008, 265, p 1756–1766CrossRef
18.
Zurück zum Zitat W. Xue, X. Wu, X. Li, and H. Tian, Anti-Corrosion Film on 2024/SiC Aluminum Matrix Composite Fabricated by Microarc Oxidation in Silicate Electrolyte, Alloys Compd., 2006, 425, p 302–306CrossRef W. Xue, X. Wu, X. Li, and H. Tian, Anti-Corrosion Film on 2024/SiC Aluminum Matrix Composite Fabricated by Microarc Oxidation in Silicate Electrolyte, Alloys Compd., 2006, 425, p 302–306CrossRef
19.
Zurück zum Zitat I. Aziz, Z. Qi, and X. Min, Corrosion Inhibition of SiCp/5A06 Aluminum Metal Matrix Composite by Cerium Conversion Treatment, Chin. J. Aeronaut., 2009, 22, p 670–676CrossRef I. Aziz, Z. Qi, and X. Min, Corrosion Inhibition of SiCp/5A06 Aluminum Metal Matrix Composite by Cerium Conversion Treatment, Chin. J. Aeronaut., 2009, 22, p 670–676CrossRef
20.
Zurück zum Zitat B. Bobic, S. Mitrovic, M. Babic, and I. Bobic, Corrosion of Metal-Matrix Composites with Aluminum Alloy Substrate, Trib. Ind., 2010, 32, p 3–11 B. Bobic, S. Mitrovic, M. Babic, and I. Bobic, Corrosion of Metal-Matrix Composites with Aluminum Alloy Substrate, Trib. Ind., 2010, 32, p 3–11
21.
Zurück zum Zitat P.M. Ashraf and S.M.A. Shibli, Reinforcing Aluminium with Cerium Oxide: A New and Effective Technique to Prevent Corrosion in Marine Environments, Electrochem. Commun., 2007, 9, p 443–448CrossRef P.M. Ashraf and S.M.A. Shibli, Reinforcing Aluminium with Cerium Oxide: A New and Effective Technique to Prevent Corrosion in Marine Environments, Electrochem. Commun., 2007, 9, p 443–448CrossRef
22.
Zurück zum Zitat P.M. Ashraf and S.M.A. Shibli, Development of Cerium Oxide and Nickel Oxide-Incorporated Aluminum Matrix for Marine Applications, Alloys Compd., 2009, 484, p 477–482CrossRef P.M. Ashraf and S.M.A. Shibli, Development of Cerium Oxide and Nickel Oxide-Incorporated Aluminum Matrix for Marine Applications, Alloys Compd., 2009, 484, p 477–482CrossRef
23.
Zurück zum Zitat L. Yang, X. Pang, G. Fox-Rabinovich, S. Veldhuis, and I. Zhitomirsky, Electrodeposition of Cerium Oxide Films and Composites, Surf. Coat. Technol., 2011, 206, p 1–7CrossRef L. Yang, X. Pang, G. Fox-Rabinovich, S. Veldhuis, and I. Zhitomirsky, Electrodeposition of Cerium Oxide Films and Composites, Surf. Coat. Technol., 2011, 206, p 1–7CrossRef
24.
Zurück zum Zitat J.Q. Su, T.W. Nelson, and C.J. Sterling, Microstructure Evolution During FSW/FSP of High Strength Aluminum Alloys, Mater. Sci. Eng. A, 2005, 405, p 277–286CrossRef J.Q. Su, T.W. Nelson, and C.J. Sterling, Microstructure Evolution During FSW/FSP of High Strength Aluminum Alloys, Mater. Sci. Eng. A, 2005, 405, p 277–286CrossRef
25.
Zurück zum Zitat P.B. Prangnell and C.P. Heason, Grain Structure Formation During Friction Stir Welding Observed by the Stop Action Technique, Acta Mater., 2005, 53, p 3179–3192CrossRef P.B. Prangnell and C.P. Heason, Grain Structure Formation During Friction Stir Welding Observed by the Stop Action Technique, Acta Mater., 2005, 53, p 3179–3192CrossRef
26.
Zurück zum Zitat J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium, Acta Mater., 2003, 51, p 713–729CrossRef J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium, Acta Mater., 2003, 51, p 713–729CrossRef
27.
Zurück zum Zitat T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys, Scripta Mater., 2008, 58, p 349–354CrossRef T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys, Scripta Mater., 2008, 58, p 349–354CrossRef
28.
Zurück zum Zitat F.J. Humphreys, P.B. Prangnell, and R. Priestner, Fine-Grained Alloys by Thermomechanical Processing, Curr. Opin. Solid State Mater. Sci., 2001, 5, p 15–21CrossRef F.J. Humphreys, P.B. Prangnell, and R. Priestner, Fine-Grained Alloys by Thermomechanical Processing, Curr. Opin. Solid State Mater. Sci., 2001, 5, p 15–21CrossRef
29.
Zurück zum Zitat A.H. Feng and Z.Y. Ma, Microstructural Evolution of Cast Mg-Al-Zn During Friction Stir Processing and Subsequent Aging, Acta Mater., 2009, 57, p 4248–4260CrossRef A.H. Feng and Z.Y. Ma, Microstructural Evolution of Cast Mg-Al-Zn During Friction Stir Processing and Subsequent Aging, Acta Mater., 2009, 57, p 4248–4260CrossRef
30.
Zurück zum Zitat D. Yadav and R. Bauri, Nickel Particle Embedded Aluminum Matrix Composite with High Ductility, Mater. Lett., 2010, 64, p 664–667CrossRef D. Yadav and R. Bauri, Nickel Particle Embedded Aluminum Matrix Composite with High Ductility, Mater. Lett., 2010, 64, p 664–667CrossRef
31.
Zurück zum Zitat L.B. Johannes, I. Charit, R.S. Mishra, and R. Verma, Enhanced Superplasticity Through Friction Stir Processing in Continuous Cast AA5083 Aluminum, Mater. Sci. Eng. A, 2007, 464, p 351–357CrossRef L.B. Johannes, I. Charit, R.S. Mishra, and R. Verma, Enhanced Superplasticity Through Friction Stir Processing in Continuous Cast AA5083 Aluminum, Mater. Sci. Eng. A, 2007, 464, p 351–357CrossRef
32.
Zurück zum Zitat M.A. Garcia-Bernal, R.S. Mishra, R. Verma, and D. Hernandez-Silva, Hot Deformation Behavior of Friction-Stir Processed Strip-Cast 5083 Aluminum Alloys with Different Mn Contents, Mater. Sci. Eng. A, 2012, 534, p 186–192CrossRef M.A. Garcia-Bernal, R.S. Mishra, R. Verma, and D. Hernandez-Silva, Hot Deformation Behavior of Friction-Stir Processed Strip-Cast 5083 Aluminum Alloys with Different Mn Contents, Mater. Sci. Eng. A, 2012, 534, p 186–192CrossRef
33.
Zurück zum Zitat P. Asadi, M.K. BesharatiGivi, K. Abrinia, M. Taherishargh, and R. Salekrostam, Effects of SiC Particle Size and Process Parameters on the Microstructure and Hardness of AZ91/SiC Composite Layer Fabricated by FSP, JMEP, 2011, 20, p 1554–1562CrossRef P. Asadi, M.K. BesharatiGivi, K. Abrinia, M. Taherishargh, and R. Salekrostam, Effects of SiC Particle Size and Process Parameters on the Microstructure and Hardness of AZ91/SiC Composite Layer Fabricated by FSP, JMEP, 2011, 20, p 1554–1562CrossRef
34.
Zurück zum Zitat Q. Liu, L. Ke, F. Liu, C. Huang, and L. Xing, Microstructure and Mechanical Property of Multi-Walled Carbon Nanotubes Reinforced Aluminum Matrix Composites Fabricated by Friction Stir Processing, Mater. Des., 2013, 45, p 343–348CrossRef Q. Liu, L. Ke, F. Liu, C. Huang, and L. Xing, Microstructure and Mechanical Property of Multi-Walled Carbon Nanotubes Reinforced Aluminum Matrix Composites Fabricated by Friction Stir Processing, Mater. Des., 2013, 45, p 343–348CrossRef
35.
Zurück zum Zitat Y.S. Sato, S.H.C. Park, and H. Kokawa, Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys, Metall. Mater. Trans. A, 2001, 32, p 3033–3042CrossRef Y.S. Sato, S.H.C. Park, and H. Kokawa, Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys, Metall. Mater. Trans. A, 2001, 32, p 3033–3042CrossRef
36.
Zurück zum Zitat Z. Zhang and D.L. Chen, Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites, Mater. Sci. Eng. A, 2008, 483–484, p 148–152CrossRef Z. Zhang and D.L. Chen, Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites, Mater. Sci. Eng. A, 2008, 483–484, p 148–152CrossRef
37.
Zurück zum Zitat G.R. Cui, Z.Y. Ma, and S.X. Li, The Origin of Non-uniform Microstructure and Its Effects on the Mechanical Properties of a Friction Stir Processed Al-Mg Alloy, Acta Mater., 2009, 57, p 5718–5729CrossRef G.R. Cui, Z.Y. Ma, and S.X. Li, The Origin of Non-uniform Microstructure and Its Effects on the Mechanical Properties of a Friction Stir Processed Al-Mg Alloy, Acta Mater., 2009, 57, p 5718–5729CrossRef
38.
Zurück zum Zitat C. MaxwellRejil, I. Dinaharanb, S.J. Vijayb, and N. Muruganc, Microstructure and Sliding Wear Behavior of AA6360/(TiC + B4C) Hybrid Surface Composite Layer Synthesized by Friction Stir Processing on Aluminum Substrate, Mater. Sci. Eng. A., 2012, 552, p 336–344CrossRef C. MaxwellRejil, I. Dinaharanb, S.J. Vijayb, and N. Muruganc, Microstructure and Sliding Wear Behavior of AA6360/(TiC + B4C) Hybrid Surface Composite Layer Synthesized by Friction Stir Processing on Aluminum Substrate, Mater. Sci. Eng. A., 2012, 552, p 336–344CrossRef
39.
Zurück zum Zitat E. McCafferty, Introduction to Corrosion Science, Springer, New York, 2010, p 221–274CrossRef E. McCafferty, Introduction to Corrosion Science, Springer, New York, 2010, p 221–274CrossRef
40.
Zurück zum Zitat G.S. Frankel, Pitting Corrosion, Corrosion: Fundamentals, Testing, and Protection, ASM Handbook, Vol 13A, ASM International, Materials Park, 2003, p 590–605 G.S. Frankel, Pitting Corrosion, Corrosion: Fundamentals, Testing, and Protection, ASM Handbook, Vol 13A, ASM International, Materials Park, 2003, p 590–605
41.
Zurück zum Zitat M. Trueba and S.P. Trasatti, Study of Al Alloy Corrosion in Neutral NaCl by the Pitting Scan Technique, Mater. Chem. Phys., 2010, 121, p 523–533CrossRef M. Trueba and S.P. Trasatti, Study of Al Alloy Corrosion in Neutral NaCl by the Pitting Scan Technique, Mater. Chem. Phys., 2010, 121, p 523–533CrossRef
42.
Zurück zum Zitat A. Aballe, M. Bethencourt, F.J. Botana, M.J. Cano, and M. Marcos, Influence of the Cathodic Intermetallic Distribution on the Reproducibility of the Electrochemical Measurements on AA5083 Alloy in NaCl Solutions, Corros. Sci., 2003, 45, p 161–180CrossRef A. Aballe, M. Bethencourt, F.J. Botana, M.J. Cano, and M. Marcos, Influence of the Cathodic Intermetallic Distribution on the Reproducibility of the Electrochemical Measurements on AA5083 Alloy in NaCl Solutions, Corros. Sci., 2003, 45, p 161–180CrossRef
43.
Zurück zum Zitat G.R. Argade, K. Kandasamy, S.K. Panigrahi, and R.S. Mishra, Corrosion Behavior of a Friction Stir Processed Rare-Earth Added Magnesium Alloy, Corros. Sci., 2012, 58, p 321–326CrossRef G.R. Argade, K. Kandasamy, S.K. Panigrahi, and R.S. Mishra, Corrosion Behavior of a Friction Stir Processed Rare-Earth Added Magnesium Alloy, Corros. Sci., 2012, 58, p 321–326CrossRef
44.
Zurück zum Zitat X. Yu, C. Cao, Z. Yao, D. Zhou, and Z. Yin, Study of Double Layer Rare Earth Metal Conversion Coating on Aluminum Alloy LY12, Corros. Sci., 2001, 43, p 1283–1294CrossRef X. Yu, C. Cao, Z. Yao, D. Zhou, and Z. Yin, Study of Double Layer Rare Earth Metal Conversion Coating on Aluminum Alloy LY12, Corros. Sci., 2001, 43, p 1283–1294CrossRef
45.
Zurück zum Zitat M. Bethencourt, F.J. Botana, J.J. Calvino, M. Marcos, and M.A. Rodriguez-chacon, Lanthanide Compounds as Environmentally Friendly Corrosion Inhibitors of Aluminum Alloys: A Review, Corros. Sci., 1998, 40, p 1803–1819CrossRef M. Bethencourt, F.J. Botana, J.J. Calvino, M. Marcos, and M.A. Rodriguez-chacon, Lanthanide Compounds as Environmentally Friendly Corrosion Inhibitors of Aluminum Alloys: A Review, Corros. Sci., 1998, 40, p 1803–1819CrossRef
46.
Zurück zum Zitat T.N. Rhys-Jones, H.J. Grabke, and H. Kudielka, The Effects of Various Amounts of Alloyed Cerium and Cerium Oxide on the High Temperature Oxidation of Fe-10Cr and Fe-20Cr Alloys, Corros. Sci., 1987, 27, p 49–73CrossRef T.N. Rhys-Jones, H.J. Grabke, and H. Kudielka, The Effects of Various Amounts of Alloyed Cerium and Cerium Oxide on the High Temperature Oxidation of Fe-10Cr and Fe-20Cr Alloys, Corros. Sci., 1987, 27, p 49–73CrossRef
Metadaten
Titel
Mechanical Properties and Corrosion Behavior of CeO2 and SiC Incorporated Al5083 Alloy Surface Composites
verfasst von
M. Amra
Khalil Ranjbar
R. Dehmolaei
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1596-9

Weitere Artikel der Ausgabe 8/2015

Journal of Materials Engineering and Performance 8/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.