Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2016

16.02.2016

An Hybrid Approach Based on Machining and Dynamic Tests Data for the Identification of Material Constitutive Equations

verfasst von: Walid Jomaa, Victor Songmene, Philippe Bocher

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, there has been growing interest for the identification of material constitutive equations using machining tests (inverse method). However, the inverse method has shown some drawbacks that could affect the accuracy of the identified material constants. On one hand, this approach requires the use of analytical model to estimate the cutting temperature. Nevertheless, the used temperature models lead to large discrepancies for the calculated temperatures even for the same work material and cutting conditions. On the other hand, some computation issues were observed when all material constants were determined, in the same time, using machining tests data. Therefore, this study attempts to provide a methodology for identifying the coefficients of the Marusich’s constitutive equation (MCE) which demonstrated a good capability for the simulation of the material behavior in high speed machining. The proposed approach, which is based on an analytical inverse method together with dynamic tests, was applied to aluminum alloys AA6061-T6 and AA7075-T651, and induction hardened AISI 4340 steel (60 HRC). The response surface methodology was used in this approach. Two sets of material coefficients, for each tested work material, were determined using two different temperature models (Oxley and Loewen-Shaw). The obtained constitutive equations were validated using dynamic tests and finite element simulation of high speed machining. The predictions obtained are also compared to those performed with the corresponding Johnson and Cook constitutive equations (JCE) from the literature. The sensitivity analysis revealed that the selected temperature models used in the analytical inverse method can affect significantly the identified material constants and thereafter predicted dynamic response and machining data. Moreover, the MCE obtained using the hybrid method performed better than the JCE obtained by only dynamic tests.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Umbrello, R. M’Saoubi, and J.C. Outeiro, The Influence of Johnson-Cook Material Constants on Finite Element Simulation of Machining of AISI, 316L Steel, Int. J. Mach. Tools Manuf, 2007, 47, p 462–470CrossRef D. Umbrello, R. M’Saoubi, and J.C. Outeiro, The Influence of Johnson-Cook Material Constants on Finite Element Simulation of Machining of AISI, 316L Steel, Int. J. Mach. Tools Manuf, 2007, 47, p 462–470CrossRef
2.
Zurück zum Zitat D.R. Lesuer, G. Kay, M. LeBlanc, Modeling Large-Strain, High-Rate Deformation in Metals, Third Biennial Tri-Laboratory Engineering Conference Modeling and Simulation, Pleasanton, CA, 1999 D.R. Lesuer, G. Kay, M. LeBlanc, Modeling Large-Strain, High-Rate Deformation in Metals, Third Biennial Tri-Laboratory Engineering Conference Modeling and Simulation, Pleasanton, CA, 1999
3.
Zurück zum Zitat W.K. Rule, A Numerical Scheme for Extracting Strength Model Coefficients from Taylor Test Data, Int. J. Impact Eng., 1997, 19, p 797–810CrossRef W.K. Rule, A Numerical Scheme for Extracting Strength Model Coefficients from Taylor Test Data, Int. J. Impact Eng., 1997, 19, p 797–810CrossRef
4.
Zurück zum Zitat T. Özel and E. Zeren, A Methodology to Determine Work Material Flow Stress and Tool-Chip Interfacial Friction Properties by Using Analysis of Machining, J. Manuf. Sci. Eng., 2006, 128, p 119–129CrossRef T. Özel and E. Zeren, A Methodology to Determine Work Material Flow Stress and Tool-Chip Interfacial Friction Properties by Using Analysis of Machining, J. Manuf. Sci. Eng., 2006, 128, p 119–129CrossRef
5.
Zurück zum Zitat N. Tounsi, J. Vincenti, A. Otho, and M. Elbestawi, From the Basic Mechanics of Orthogonal Metal Cutting Toward the Identification of the Constitutive Equation, Int. J. Mach. Tools Manuf., 2002, 42, p 1373–1383CrossRef N. Tounsi, J. Vincenti, A. Otho, and M. Elbestawi, From the Basic Mechanics of Orthogonal Metal Cutting Toward the Identification of the Constitutive Equation, Int. J. Mach. Tools Manuf., 2002, 42, p 1373–1383CrossRef
6.
Zurück zum Zitat B. Li, X. Wang, Y. Hu, and C. Li, Analytical Prediction of Cutting Forces in Orthogonal Cutting Using Unequal Division Shear-Zone Model, Int. J. Adv. Manuf. Technol., 2011, 54, p 431–443CrossRef B. Li, X. Wang, Y. Hu, and C. Li, Analytical Prediction of Cutting Forces in Orthogonal Cutting Using Unequal Division Shear-Zone Model, Int. J. Adv. Manuf. Technol., 2011, 54, p 431–443CrossRef
7.
Zurück zum Zitat B. Kristyanto, P. Mathew, and J. Arsecularatne, Development of a Variable Flow Stress Machining Theory for Aluminium Alloys, Mach. Sci. Technol., 2002, 6, p 365–378CrossRef B. Kristyanto, P. Mathew, and J. Arsecularatne, Development of a Variable Flow Stress Machining Theory for Aluminium Alloys, Mach. Sci. Technol., 2002, 6, p 365–378CrossRef
8.
Zurück zum Zitat N. Fang, A New Quantitative Sensitivity Analysis of the Flow Stress of 18 Engineering Materials in Machining, J. Eng. Mater. Technol., 2005, 127, p 192–196CrossRef N. Fang, A New Quantitative Sensitivity Analysis of the Flow Stress of 18 Engineering Materials in Machining, J. Eng. Mater. Technol., 2005, 127, p 192–196CrossRef
9.
Zurück zum Zitat S. Jaspers and J. Dautzenberg, Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone, J. Mater. Process. Technol., 2002, 122, p 322–330CrossRef S. Jaspers and J. Dautzenberg, Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone, J. Mater. Process. Technol., 2002, 122, p 322–330CrossRef
10.
Zurück zum Zitat F. Abed and F. Makarem, Comparisons of Constitutive Models for Steel over a Wide Range of Temperatures and Strain Rates, J. Eng. Mater. Technol., 2012, 134, p 021001CrossRef F. Abed and F. Makarem, Comparisons of Constitutive Models for Steel over a Wide Range of Temperatures and Strain Rates, J. Eng. Mater. Technol., 2012, 134, p 021001CrossRef
11.
Zurück zum Zitat T. Marusich and M. Ortiz, Modelling and Simulation of High-Speed Machining, Int. J. Numer. Methods Eng., 1995, 38, p 3675–3694CrossRef T. Marusich and M. Ortiz, Modelling and Simulation of High-Speed Machining, Int. J. Numer. Methods Eng., 1995, 38, p 3675–3694CrossRef
12.
Zurück zum Zitat I. Zaghbani and V. Songmene, A Force-Temperature Model Including a Constitutive Law for Dry High Speed Milling of Aluminium Alloys, J. Mater. Process. Technol., 2009, 209, p 2532–2544CrossRef I. Zaghbani and V. Songmene, A Force-Temperature Model Including a Constitutive Law for Dry High Speed Milling of Aluminium Alloys, J. Mater. Process. Technol., 2009, 209, p 2532–2544CrossRef
13.
Zurück zum Zitat P. Sartkulvanich, T. Altan, and J. Soehner, Flow Stress Data for Finite Element Simulation in Metal Cutting: A Progress Report on Madams, Mach. Sci. Technol., 2005, 9, p 271–288CrossRef P. Sartkulvanich, T. Altan, and J. Soehner, Flow Stress Data for Finite Element Simulation in Metal Cutting: A Progress Report on Madams, Mach. Sci. Technol., 2005, 9, p 271–288CrossRef
14.
Zurück zum Zitat P. Oxley and W. Hastings, Predicting the Strain Rate in the Zone of Intense Shear in Which the Chip is Formed in Machining from the Dynamic Flow Stress Properties of the Work Material and the Cutting Conditions, Proc. R. Soc. Lond. A, 1977, 356, p 395–410CrossRef P. Oxley and W. Hastings, Predicting the Strain Rate in the Zone of Intense Shear in Which the Chip is Formed in Machining from the Dynamic Flow Stress Properties of the Work Material and the Cutting Conditions, Proc. R. Soc. Lond. A, 1977, 356, p 395–410CrossRef
15.
Zurück zum Zitat E.G. Loewen and M.C. Shaw, On the Analysis of Cutting Tool Temperature, Trans. ASME, 1954, 76(2), p 217 E.G. Loewen and M.C. Shaw, On the Analysis of Cutting Tool Temperature, Trans. ASME, 1954, 76(2), p 217
16.
Zurück zum Zitat D.C. Montgomery, Design and Analysis of Experiments, Wiley, New York, 2006 D.C. Montgomery, Design and Analysis of Experiments, Wiley, New York, 2006
17.
Zurück zum Zitat W. Jomaa, “Contributions to Understanding the High Speed Machining Effects on Aeronautic Part Surface Integrity,” Ph.D. Canada, École de technologie supérieure, 2015. W. Jomaa, “Contributions to Understanding the High Speed Machining Effects on Aeronautic Part Surface Integrity,” Ph.D. Canada, École de technologie supérieure, 2015.
18.
Zurück zum Zitat K.G. Hoge, Influence of Strain Rate on Mechanical Properties of 6061-T6 Aluminum Under Uniaxial and Biaxial States of Stress, Exp. Mech., 1966, 6, p 204–211CrossRef K.G. Hoge, Influence of Strain Rate on Mechanical Properties of 6061-T6 Aluminum Under Uniaxial and Biaxial States of Stress, Exp. Mech., 1966, 6, p 204–211CrossRef
19.
Zurück zum Zitat A. Manes, L. Peroni, M. Scapin, and M. Giglio, Analysis of Strain Rate Behavior of an Al 6061 T6 Alloy, Proc. Eng., 2011, 10, p 3477–3482CrossRef A. Manes, L. Peroni, M. Scapin, and M. Giglio, Analysis of Strain Rate Behavior of an Al 6061 T6 Alloy, Proc. Eng., 2011, 10, p 3477–3482CrossRef
20.
Zurück zum Zitat W.-S. Lee, W.-C. Sue, C.-F. Lin, and C.-J. Wu, The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy, J. Mater. Process. Technol., 2000, 100, p 116–122CrossRef W.-S. Lee, W.-C. Sue, C.-F. Lin, and C.-J. Wu, The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy, J. Mater. Process. Technol., 2000, 100, p 116–122CrossRef
21.
Zurück zum Zitat W.K. Rule and S. Jones, A Revised form for the Johnson-Cook Strength Model, Int. J. Impact Eng., 1998, 21, p 609–624CrossRef W.K. Rule and S. Jones, A Revised form for the Johnson-Cook Strength Model, Int. J. Impact Eng., 1998, 21, p 609–624CrossRef
22.
Zurück zum Zitat W. Lee and H. Lam, Mechanical Response and Dislocation Substructure of High Strength Ni-Cr-Mo Steel Subjected to Impact Loading, Le Journal de Physique IV, 1994, 4, p C8-307–C8-312 W. Lee and H. Lam, Mechanical Response and Dislocation Substructure of High Strength Ni-Cr-Mo Steel Subjected to Impact Loading, Le Journal de Physique IV, 1994, 4, p C8-307–C8-312
23.
Zurück zum Zitat D. Zhu, B. Mobasher, S. Rajan, and P. Peralta, Characterization of Dynamic Tensile Testing Using Aluminum Alloy 6061-T6 at Intermediate Strain Rates, J. Eng. Mech., 2011, 137, p 669–679CrossRef D. Zhu, B. Mobasher, S. Rajan, and P. Peralta, Characterization of Dynamic Tensile Testing Using Aluminum Alloy 6061-T6 at Intermediate Strain Rates, J. Eng. Mech., 2011, 137, p 669–679CrossRef
24.
Zurück zum Zitat Y. Yang, Y. Zeng, and Z. Gao, Numerical and Experimental Studies of Self-organization of Shear Bands in 7075 Aluminium Alloy, Mater. Sci. Eng. A, 2008, 496, p 291–302CrossRef Y. Yang, Y. Zeng, and Z. Gao, Numerical and Experimental Studies of Self-organization of Shear Bands in 7075 Aluminium Alloy, Mater. Sci. Eng. A, 2008, 496, p 291–302CrossRef
25.
Zurück zum Zitat W.-S. Lee and H.-F. Lam, The Deformation Behaviour and Microstructure Evolution of High-Strength Alloy Steel at High Rate of Strain, J. Mater. Process. Technol., 1996, 57, p 233–240CrossRef W.-S. Lee and H.-F. Lam, The Deformation Behaviour and Microstructure Evolution of High-Strength Alloy Steel at High Rate of Strain, J. Mater. Process. Technol., 1996, 57, p 233–240CrossRef
26.
Zurück zum Zitat J. Huang and E.C. Aifantis, A Note on the Problem of Shear Localization During Chip Formation in Orthogonal Machining, J. Mater. Eng. Perform., 1997, 6, p 25–26CrossRef J. Huang and E.C. Aifantis, A Note on the Problem of Shear Localization During Chip Formation in Orthogonal Machining, J. Mater. Eng. Perform., 1997, 6, p 25–26CrossRef
27.
Zurück zum Zitat J. Xie, A. Bayoumi, and H. Zbib, Analytical and Experimental Study of Shear Localization in Chip Formation in Orthogonal Machining, J. Mater. Eng. Perform., 1995, 4, p 32–39CrossRef J. Xie, A. Bayoumi, and H. Zbib, Analytical and Experimental Study of Shear Localization in Chip Formation in Orthogonal Machining, J. Mater. Eng. Perform., 1995, 4, p 32–39CrossRef
28.
Zurück zum Zitat A.S.M.I.H. Committee, ASM Handbook—Properties and Selection: Irons, Steels, and High-Performance Alloys, Vol 1, ASM International, Materials Park, 1990 A.S.M.I.H. Committee, ASM Handbook—Properties and Selection: Irons, Steels, and High-Performance Alloys, Vol 1, ASM International, Materials Park, 1990
29.
Zurück zum Zitat A.S.M.I.H. Committee, ASM Handbook—Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol 2. ASM International, Materials Park, 1991 A.S.M.I.H. Committee, ASM Handbook—Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol 2. ASM International, Materials Park, 1991
30.
Zurück zum Zitat O. Lee, H. Choi, and H. Kim, High-Temperature Dynamic Deformation of Aluminum Alloys Using SHPB, J. Mech. Sci. Technol., 2011, 25, p 143–148CrossRef O. Lee, H. Choi, and H. Kim, High-Temperature Dynamic Deformation of Aluminum Alloys Using SHPB, J. Mech. Sci. Technol., 2011, 25, p 143–148CrossRef
31.
Zurück zum Zitat W.-S. Lee and G.-W. Yeh, The Plastic Deformation Behaviour of AISI, 4340 Alloy Steel Subjected to High Temperature and High Strain Rate Loading Conditions, J. Mater. Process. Technol., 1997, 71, p 224–234CrossRef W.-S. Lee and G.-W. Yeh, The Plastic Deformation Behaviour of AISI, 4340 Alloy Steel Subjected to High Temperature and High Strain Rate Loading Conditions, J. Mater. Process. Technol., 1997, 71, p 224–234CrossRef
32.
Zurück zum Zitat D.R. Lesuer, G. Kay, and M. LeBlanc, Modeling Large-Strain, High Rate Deformation in Metals, Modelling the Performance of Engineering Structural Materials II. Proceedings of a Symposium, D.R. Lesuer and T.S. Srivatsan, Ed., TMS, Warrendale, PA, 2001, p 75–86 D.R. Lesuer, G. Kay, and M. LeBlanc, Modeling Large-Strain, High Rate Deformation in Metals, Modelling the Performance of Engineering Structural Materials II. Proceedings of a Symposium, D.R. Lesuer and T.S. Srivatsan, Ed., TMS, Warrendale, PA, 2001, p 75–86
33.
Zurück zum Zitat N. Brar, V. Joshi, and B. Harris, Constitutive Model Constants for Al7075‐t651 and Al7075‐t6, Shock Compression of Condensed Matter 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Vol. 1195, AIP Publishing, 2009, p 945–948 N. Brar, V. Joshi, and B. Harris, Constitutive Model Constants for Al7075‐t651 and Al7075‐t6, Shock Compression of Condensed Matter 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Vol. 1195, AIP Publishing, 2009, p 945–948
34.
Zurück zum Zitat Y.-C. Yen, A. Jain, P. Chigurupati, W.-T. Wu, and T. Altan, Computer Simulation of Orthogonal Cutting Using a Tool with Multiple Coatings, Mach. Sci. Technol., 2004, 8, p 305–326CrossRef Y.-C. Yen, A. Jain, P. Chigurupati, W.-T. Wu, and T. Altan, Computer Simulation of Orthogonal Cutting Using a Tool with Multiple Coatings, Mach. Sci. Technol., 2004, 8, p 305–326CrossRef
35.
Zurück zum Zitat R.F. Brito, S.R.D. Carvalho, S.M.M.D. Lima e Silva, and J.R. Ferreira, Thermal Analysis in Coated Cutting Tools, Int. Commun. Heat Mass Transf., 2009, 36, p 314–321CrossRef R.F. Brito, S.R.D. Carvalho, S.M.M.D. Lima e Silva, and J.R. Ferreira, Thermal Analysis in Coated Cutting Tools, Int. Commun. Heat Mass Transf., 2009, 36, p 314–321CrossRef
36.
Zurück zum Zitat T.I. El-Wardany, E. Mohammed, and M.A. Elbestawi, Cutting Temperature of Ceramic Tools in High Speed Machining of Difficult-to-Cut Materials, Int. J. Mach. Tools Manuf., 1996, 36, p 611–634CrossRef T.I. El-Wardany, E. Mohammed, and M.A. Elbestawi, Cutting Temperature of Ceramic Tools in High Speed Machining of Difficult-to-Cut Materials, Int. J. Mach. Tools Manuf., 1996, 36, p 611–634CrossRef
37.
Zurück zum Zitat F. Klocke, D. Lung, S. Buchkremer, and I. Jawahir, From Orthogonal Cutting Experiments Towards Easy-to-Implement and Accurate Flow Stress Data, Mater. Manuf. Process., 2013, 28, p 1222–1227CrossRef F. Klocke, D. Lung, S. Buchkremer, and I. Jawahir, From Orthogonal Cutting Experiments Towards Easy-to-Implement and Accurate Flow Stress Data, Mater. Manuf. Process., 2013, 28, p 1222–1227CrossRef
38.
Zurück zum Zitat H. Bil, S. Kılıç, and A.E. Tekkaya, A Comparison of Orthogonal Cutting Data from Experiments with Three Different Finite Element Models, Int. J. Mach. Tools Manuf., 2004, 44, p 933–944CrossRef H. Bil, S. Kılıç, and A.E. Tekkaya, A Comparison of Orthogonal Cutting Data from Experiments with Three Different Finite Element Models, Int. J. Mach. Tools Manuf., 2004, 44, p 933–944CrossRef
39.
Zurück zum Zitat L. Filice, F. Micari, S. Rizzuti, and D. Umbrello, A Critical Analysis on the Friction Modelling in Orthogonal Machining, Int. J. Mach. Tools Manuf., 2007, 47, p 709–714CrossRef L. Filice, F. Micari, S. Rizzuti, and D. Umbrello, A Critical Analysis on the Friction Modelling in Orthogonal Machining, Int. J. Mach. Tools Manuf., 2007, 47, p 709–714CrossRef
Metadaten
Titel
An Hybrid Approach Based on Machining and Dynamic Tests Data for the Identification of Material Constitutive Equations
verfasst von
Walid Jomaa
Victor Songmene
Philippe Bocher
Publikationsdatum
16.02.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-1950-6

Weitere Artikel der Ausgabe 3/2016

Journal of Materials Engineering and Performance 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.