Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2016

13.07.2016

Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy

verfasst von: Peiman Shahbeigi Roodposhti, Apu Sarkar, Korukonda L. Murty, Ronald O. Scattergood

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This review sheds light on the creep properties of AZ91 magnesium alloys with a major emphasis on the influence of microstructure on the creep resistance and underlying creep deformation mechanism based on stress exponent and activation energy. Effects of processing routes such as steel mold casting, die casting, and thixoforming are considered. Roles of a wide range of additional alloying elements such as Si, Sb, Bi, Ca, Sn, REs, and combined addition of them on the microstructure modification were investigated. The reaction between these elements and the Mg or Al in the matrix develops some thermally stable intermetallic phases which improves the creep resistance at elevated temperatures, however does not influence the creep mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Spigarelli, M. Cabibbo, E. Evangelista, M. Talianker, and V. Ezersky, Analysis of the Creep Behaviour of a Thixoformed AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2000, 289(1-2), p 172–181CrossRef S. Spigarelli, M. Cabibbo, E. Evangelista, M. Talianker, and V. Ezersky, Analysis of the Creep Behaviour of a Thixoformed AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2000, 289(1-2), p 172–181CrossRef
2.
Zurück zum Zitat B.L. Mordike and T. Ebert, Magnesium Properties—Applications—Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45CrossRef B.L. Mordike and T. Ebert, Magnesium Properties—Applications—Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45CrossRef
3.
Zurück zum Zitat P. Shahbeigi Roodposhti, A. Sarkar, and K.L. Murty, Microstructure Development of High Temperature Deformed AZ31 Magnesium Alloys, Mater. Sci. Eng. A, 2015, 626, p 195–202CrossRef P. Shahbeigi Roodposhti, A. Sarkar, and K.L. Murty, Microstructure Development of High Temperature Deformed AZ31 Magnesium Alloys, Mater. Sci. Eng. A, 2015, 626, p 195–202CrossRef
4.
Zurück zum Zitat G. Fallahi and H. Mokhtari, Performance Improvement of Parallel Active Power Filters Using Droop Control Method, Asia-Pacific Power and Energy Engineering Conference, 2009, p 1–4 G. Fallahi and H. Mokhtari, Performance Improvement of Parallel Active Power Filters Using Droop Control Method, Asia-Pacific Power and Energy Engineering Conference, 2009,  p 1–4
5.
Zurück zum Zitat P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, and R.O. Scattergood, Dislocation Density Evolution During Creep of AZ31 Mg Alloy: A Study by X-ray Diffraction Line Profile Analysis, Metallogr. Microstruct. Anal., 2015, 4(5), p 337–343CrossRef P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, and R.O. Scattergood, Dislocation Density Evolution During Creep of AZ31 Mg Alloy: A Study by X-ray Diffraction Line Profile Analysis, Metallogr. Microstruct. Anal., 2015, 4(5), p 337–343CrossRef
6.
Zurück zum Zitat N. Farahbakhsh, P.S. Roodposhti, A.S. Ayoub, R.A. Venditti, and J.S. Jur, Melt Extrusion of Polyethylene Nanocomposites Reinforced with Nanofibrillated Cellulose from Cotton and Wood Sources, J. Appl. Polym. Sci., 2014, 132(17), p 10 N. Farahbakhsh, P.S. Roodposhti, A.S. Ayoub, R.A. Venditti, and J.S. Jur, Melt Extrusion of Polyethylene Nanocomposites Reinforced with Nanofibrillated Cellulose from Cotton and Wood Sources, J. Appl. Polym. Sci., 2014, 132(17), p 10
7.
Zurück zum Zitat P. Shahbeigi Roodposhti, N. Farahbakhsh, A. Sarkar, and K. L. Murty, A Review on the Equal Channel Angular Process of Commercially Pure Titanium, Proc. MS&T14, 2014, p. 1559–1566. P. Shahbeigi Roodposhti, N. Farahbakhsh, A. Sarkar, and K. L. Murty, A Review on the Equal Channel Angular Process of Commercially Pure Titanium, Proc. MS&T14, 2014, p. 1559–1566.
8.
Zurück zum Zitat S. Ziaei and M.A. Zikry, Modeling the Effects of Dislocation–Density Interaction, Generation, and Recovery on the Behavior of H.C.P. Materials, Metall. Mater. Trans. A, 2014. S. Ziaei and M.A. Zikry, Modeling the Effects of Dislocation–Density Interaction, Generation, and Recovery on the Behavior of H.C.P. Materials, Metall. Mater. Trans. A, 2014.
9.
Zurück zum Zitat P. Shahbeigi Roodposhti, A. Sarkar, and K.L. Murty, Creep Deformation Mechanisms and Related Microstructure Development of AZ31 Magnesium Alloy, Magnes. Technol., 2015, p 29–34. P. Shahbeigi Roodposhti, A. Sarkar, and K.L. Murty, Creep Deformation Mechanisms and Related Microstructure Development of AZ31 Magnesium Alloy, Magnes. Technol., 2015, p 29–34.
10.
Zurück zum Zitat P. Shahbeigi Roodposhti, A. Sarkar, and K.L. Murty, Fracture Behavior of AZ31 Magnesium Alloy During Low Stress High Temperature Deformation, Metallogr. Microstruct. Anal., 2015, 4, p 91–101CrossRef P. Shahbeigi Roodposhti, A. Sarkar, and K.L. Murty, Fracture Behavior of AZ31 Magnesium Alloy During Low Stress High Temperature Deformation, Metallogr. Microstruct. Anal., 2015, 4, p 91–101CrossRef
11.
Zurück zum Zitat F. Czerwinski, Magnesium Alloys Design, Processing and Properties, InTech, Rijeka, 2011CrossRef F. Czerwinski, Magnesium Alloys Design, Processing and Properties, InTech, Rijeka, 2011CrossRef
12.
Zurück zum Zitat B.H. Kim, S.W. Lee, Y.H. Park, and I.M. Park, The Microstructure, Tensile Properties, and Creep Behavior of AZ91, AS52 and TAS652 Alloy, J. Alloys Compd., 2010, 493(1-2), p 502–506CrossRef B.H. Kim, S.W. Lee, Y.H. Park, and I.M. Park, The Microstructure, Tensile Properties, and Creep Behavior of AZ91, AS52 and TAS652 Alloy, J. Alloys Compd., 2010, 493(1-2), p 502–506CrossRef
13.
Zurück zum Zitat P. Zhang, Creep Behavior of the Die-Cast Mg-Al Alloy AS21, Scr. Mater., 2005, 52(4), p 277–282CrossRef P. Zhang, Creep Behavior of the Die-Cast Mg-Al Alloy AS21, Scr. Mater., 2005, 52(4), p 277–282CrossRef
14.
Zurück zum Zitat K.L. Murty, G. Dentel, and J. Britt, Effect of Temperature on Transitions in Creep Mechanisms in Class-A Alloys, Mater. Sci. Eng. A, 2005, 410-411, p 28–31CrossRef K.L. Murty, G. Dentel, and J. Britt, Effect of Temperature on Transitions in Creep Mechanisms in Class-A Alloys, Mater. Sci. Eng. A, 2005, 410-411, p 28–31CrossRef
15.
Zurück zum Zitat K. Linga Murty, Transitional Creep Mechanisms in Al-5 Mg at High Stresses, Scr. Metall., 1973, 7(9), p 899–903CrossRef K. Linga Murty, Transitional Creep Mechanisms in Al-5 Mg at High Stresses, Scr. Metall., 1973, 7(9), p 899–903CrossRef
16.
Zurück zum Zitat K.L. Murty, F.A. Mohamed, and J.E. Dorn, Viscous Glide, Dislocation Climb and Newtonian Viscous Deformation Mechanisms of High Temperature Creep in Al-3Mg, Acta Metall., 1972, 20, p 1009–1018CrossRef K.L. Murty, F.A. Mohamed, and J.E. Dorn, Viscous Glide, Dislocation Climb and Newtonian Viscous Deformation Mechanisms of High Temperature Creep in Al-3Mg, Acta Metall., 1972, 20, p 1009–1018CrossRef
17.
Zurück zum Zitat D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min, and W. Dengyun, Microstructure and Mechanical Properties of Mg-Al Based Alloy with Calcium and Rare Earth Additions, Mater. Sci. Eng. A, 2003, 356(1-2), p 1–7CrossRef D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min, and W. Dengyun, Microstructure and Mechanical Properties of Mg-Al Based Alloy with Calcium and Rare Earth Additions, Mater. Sci. Eng. A, 2003, 356(1-2), p 1–7CrossRef
18.
Zurück zum Zitat K. Meshinchi Asl, A. Tari, and F. Khomamizadeh, The Effect of Different Content of Al, RE and Si Element on the Microstructure, Mechanical and Creep Properties of Mg-Al Alloys, Mater. Sci. Eng. A, 2009, 523(1-2), p 1–6CrossRef K. Meshinchi Asl, A. Tari, and F. Khomamizadeh, The Effect of Different Content of Al, RE and Si Element on the Microstructure, Mechanical and Creep Properties of Mg-Al Alloys, Mater. Sci. Eng. A, 2009, 523(1-2), p 1–6CrossRef
19.
Zurück zum Zitat D.H. Kang, S.S. Park, and N.J. Kim, Development of Creep Resistant Die Cast Mg-Sn-Al-Si Alloy, Mater. Sci. Eng. A, 2005, 413-414, p 555–560CrossRef D.H. Kang, S.S. Park, and N.J. Kim, Development of Creep Resistant Die Cast Mg-Sn-Al-Si Alloy, Mater. Sci. Eng. A, 2005, 413-414, p 555–560CrossRef
20.
Zurück zum Zitat K. Meshinchi Asl, A. Masoudi, and F. Khomamizadeh, The Effect of Different Rare Earth Elements Content on Microstructure, Mechanical and Wear Behavior of Mg-Al-Zn Alloy, Mater. Sci. Eng. A, 2010, 527(7-8), p 2027–2035CrossRef K. Meshinchi Asl, A. Masoudi, and F. Khomamizadeh, The Effect of Different Rare Earth Elements Content on Microstructure, Mechanical and Wear Behavior of Mg-Al-Zn Alloy, Mater. Sci. Eng. A, 2010, 527(7-8), p 2027–2035CrossRef
21.
Zurück zum Zitat B. Amir Esgandari, H. Mehrjoo, B. Nami, and S.M. Miresmaeili, The Effect of Ca and RE Elements on the Precipitation Kinetics of Mg17Al12 Phase During Artificial Aging of Magnesium Alloy AZ91, Mater. Sci. Eng. A, 2011, 528(15), p 5018–5024CrossRef B. Amir Esgandari, H. Mehrjoo, B. Nami, and S.M. Miresmaeili, The Effect of Ca and RE Elements on the Precipitation Kinetics of Mg17Al12 Phase During Artificial Aging of Magnesium Alloy AZ91, Mater. Sci. Eng. A, 2011, 528(15), p 5018–5024CrossRef
22.
Zurück zum Zitat S. Spigarelli, M. Regev, E. Evangelista, and A. Rosen, Review of Creep Behaviour of AZ91 Magnesium Alloy Produced by Different Technologies, Mater. Sci. Technol., 2001, 17, p 627–638 S. Spigarelli, M. Regev, E. Evangelista, and A. Rosen, Review of Creep Behaviour of AZ91 Magnesium Alloy Produced by Different Technologies, Mater. Sci. Technol., 2001, 17, p 627–638
23.
Zurück zum Zitat A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Scha, and D.H. Stjohn, Development of the As-cast Microstructure in Magnesium-Aluminium Alloys, J. Light Met., 2001, 1, p 61–72CrossRef A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Scha, and D.H. Stjohn, Development of the As-cast Microstructure in Magnesium-Aluminium Alloys, J. Light Met., 2001, 1, p 61–72CrossRef
24.
Zurück zum Zitat I. Manna, S.K. Pabi, and W. Gust, Discontinuous Reactions in Solids, Int. Mater. Rev., 2001, 46(2), p 53–91CrossRef I. Manna, S.K. Pabi, and W. Gust, Discontinuous Reactions in Solids, Int. Mater. Rev., 2001, 46(2), p 53–91CrossRef
25.
Zurück zum Zitat A. Srinivasan, U.T.S. Pillai, and B.C. Pai, Effects of Elemental Additions (Si and Sb) on the Ageing Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(24-25), p 6543–6550CrossRef A. Srinivasan, U.T.S. Pillai, and B.C. Pai, Effects of Elemental Additions (Si and Sb) on the Ageing Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(24-25), p 6543–6550CrossRef
26.
Zurück zum Zitat C. Do Lee and K.S. Shin, Effects of Precipitate and Dendrite Arm Spacing on Tensile Properties and Fracture Behavior of As-Cast Magnesium-Aluminum Alloys, Met. Mater. Int., 2003, 9(1), p 21–27CrossRef C. Do Lee and K.S. Shin, Effects of Precipitate and Dendrite Arm Spacing on Tensile Properties and Fracture Behavior of As-Cast Magnesium-Aluminum Alloys, Met. Mater. Int., 2003, 9(1), p 21–27CrossRef
27.
Zurück zum Zitat S.M. Zhu, B.L. Mordike, J.F. Nie, and A.C. Tests, Creep and Rupture Properties of a Squeeze-Cast Mg-Al-Ca Alloy, Metall. Mater. Trans. A, 2006, 37, p 1221–1229CrossRef S.M. Zhu, B.L. Mordike, J.F. Nie, and A.C. Tests, Creep and Rupture Properties of a Squeeze-Cast Mg-Al-Ca Alloy, Metall. Mater. Trans. A, 2006, 37, p 1221–1229CrossRef
28.
Zurück zum Zitat M. Regev, E. Aghion, and A. Rosen, Creep Studies of AZ91D Pressure Die Casting, Mater. Sci. Eng. A, 1997, 2344236, p 123–126CrossRef M. Regev, E. Aghion, and A. Rosen, Creep Studies of AZ91D Pressure Die Casting, Mater. Sci. Eng. A, 1997, 2344236, p 123–126CrossRef
29.
Zurück zum Zitat K. Ishikawa, H. Watanabe, and T. Mukai, High Strain Rate Deformation Behavior of an AZ91 Magnesium Alloy at Elevated Temperatures, Mater. Lett., 2005, 59(12), p 1511–1515CrossRef K. Ishikawa, H. Watanabe, and T. Mukai, High Strain Rate Deformation Behavior of an AZ91 Magnesium Alloy at Elevated Temperatures, Mater. Lett., 2005, 59(12), p 1511–1515CrossRef
30.
Zurück zum Zitat A. Srinivasan, J. Swaminathan, U.T.S. Pillai, K. Guguloth, and B.C. Pai, Effect of Combined Addition of Si and Sb on the Microstructure and Creep Properties of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2008, 485(1-2), p 86–91CrossRef A. Srinivasan, J. Swaminathan, U.T.S. Pillai, K. Guguloth, and B.C. Pai, Effect of Combined Addition of Si and Sb on the Microstructure and Creep Properties of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2008, 485(1-2), p 86–91CrossRef
31.
Zurück zum Zitat Y. Guangyin, S. Yangshan, and D. Wenjiang, Effects of Sb Addition on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy, Scr. Mater., 2000, 43(11), p 1009–1013CrossRef Y. Guangyin, S. Yangshan, and D. Wenjiang, Effects of Sb Addition on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy, Scr. Mater., 2000, 43(11), p 1009–1013CrossRef
32.
Zurück zum Zitat Y. Guangyin, S. Yangshan, and D. Wenjiang, Effects of Bismuth and Antimony Additions on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2001, 308(1-2), p 38–44CrossRef Y. Guangyin, S. Yangshan, and D. Wenjiang, Effects of Bismuth and Antimony Additions on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2001, 308(1-2), p 38–44CrossRef
33.
Zurück zum Zitat S. Spigarelli, Creep of a Thixoformed and Heat Treated AZ91 Mg-Al-Zn Alloy, Scr. Mater., 2000, 42(4), p 397–402CrossRef S. Spigarelli, Creep of a Thixoformed and Heat Treated AZ91 Mg-Al-Zn Alloy, Scr. Mater., 2000, 42(4), p 397–402CrossRef
34.
Zurück zum Zitat S.-Y. Lee and S.-I. Oh, Thixoforming Characteristics of Thermo-Mechanically Treated AA 6061 Alloy for Suspension Parts of Electric Vehicles, J. Mater. Process. Technol., 2002, 130-131, p 587–593CrossRef S.-Y. Lee and S.-I. Oh, Thixoforming Characteristics of Thermo-Mechanically Treated AA 6061 Alloy for Suspension Parts of Electric Vehicles, J. Mater. Process. Technol., 2002, 130-131, p 587–593CrossRef
35.
Zurück zum Zitat J.Z. Sheng, Y.H. Hua, Z.X. Ping, S.O. Sugiyama, and J. Yanagimoto, Numerical and Experimental Investigations of Semi-Solid AZ91D Magnesium Alloy in Thixoforming Process, J. Mater. Process. Technol., 2008, 202(1-3), p 412–418CrossRef J.Z. Sheng, Y.H. Hua, Z.X. Ping, S.O. Sugiyama, and J. Yanagimoto, Numerical and Experimental Investigations of Semi-Solid AZ91D Magnesium Alloy in Thixoforming Process, J. Mater. Process. Technol., 2008, 202(1-3), p 412–418CrossRef
36.
Zurück zum Zitat A. Srinivasan, K.K. Ajithkumar, J. Swaminathan, U.T.S. Pillai, and B.C. Pai, Creep Behavior of AZ91 Magnesium Alloy, Procedia Eng., 2013, 55, p 109–113CrossRef A. Srinivasan, K.K. Ajithkumar, J. Swaminathan, U.T.S. Pillai, and B.C. Pai, Creep Behavior of AZ91 Magnesium Alloy, Procedia Eng., 2013, 55, p 109–113CrossRef
37.
Zurück zum Zitat K.L. Murty, Grain Boundary Sliding and Viscous Glide Mechanisms of High Temperature Creep in Pb-6% Sn, Scr. Metall., 1973, 7, p 1083–1088CrossRef K.L. Murty, Grain Boundary Sliding and Viscous Glide Mechanisms of High Temperature Creep in Pb-6% Sn, Scr. Metall., 1973, 7, p 1083–1088CrossRef
38.
Zurück zum Zitat A. Srinivasan, J. Swaminathan, M.K. Gunjan, U.T.S. Pillai, and B.C. Pai, Effect of Intermetallic Phases on the Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(6), p 1395–1403CrossRef A. Srinivasan, J. Swaminathan, M.K. Gunjan, U.T.S. Pillai, and B.C. Pai, Effect of Intermetallic Phases on the Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(6), p 1395–1403CrossRef
39.
Zurück zum Zitat J.A. Liu, S.R. Yu, Z.Q. Huang, G. Ma, and Y. Liu, Microstructure and Compressive Property of In Situ Mg2Si Reinforced Mg-Microballoon Composites, J. Alloys Compd., 2012, 537, p 12–18CrossRef J.A. Liu, S.R. Yu, Z.Q. Huang, G. Ma, and Y. Liu, Microstructure and Compressive Property of In Situ Mg2Si Reinforced Mg-Microballoon Composites, J. Alloys Compd., 2012, 537, p 12–18CrossRef
40.
Zurück zum Zitat Z. Trojanová, V. Gärtnerová, A. Jäger, A. Námešný, M. Chalupová, P. Palček, and P. Lukáč, Mechanical and Fracture Properties of an AZ91 Magnesium Alloy Reinforced by Si and SiC Particles, Compos. Sci. Technol., 2009, 69(13), p 2256–2264CrossRef Z. Trojanová, V. Gärtnerová, A. Jäger, A. Námešný, M. Chalupová, P. Palček, and P. Lukáč, Mechanical and Fracture Properties of an AZ91 Magnesium Alloy Reinforced by Si and SiC Particles, Compos. Sci. Technol., 2009, 69(13), p 2256–2264CrossRef
41.
Zurück zum Zitat G.Y. Yuan, Z.L. Liu, Q.D. Wang, and W.J. Ding, Microstructure Refinement of Mg-Al-Zn-Si Alloys, Mater. Lett., 2002, 56(1-2), p 53–58CrossRef G.Y. Yuan, Z.L. Liu, Q.D. Wang, and W.J. Ding, Microstructure Refinement of Mg-Al-Zn-Si Alloys, Mater. Lett., 2002, 56(1-2), p 53–58CrossRef
42.
Zurück zum Zitat A. Srinivasan, U.T.S. Pillai, J. Swaminathan, S.K. Das, and B.C. Pai, Observations of Microstructural Refinement in Mg-Al-Si Alloys Containing Strontium, J. Mater. Sci., 2006, 41(18), p 6087–6089CrossRef A. Srinivasan, U.T.S. Pillai, J. Swaminathan, S.K. Das, and B.C. Pai, Observations of Microstructural Refinement in Mg-Al-Si Alloys Containing Strontium, J. Mater. Sci., 2006, 41(18), p 6087–6089CrossRef
43.
Zurück zum Zitat A. Boby, K.K. Ravikumar, U.T.S. Pillai, and B.C. Pai, Effect of Antimony and Yttrium Addition on the High Temperature Properties of AZ91 Magnesium Alloy, Procedia Eng., 2013, 55, p 98–102CrossRef A. Boby, K.K. Ravikumar, U.T.S. Pillai, and B.C. Pai, Effect of Antimony and Yttrium Addition on the High Temperature Properties of AZ91 Magnesium Alloy, Procedia Eng., 2013, 55, p 98–102CrossRef
44.
Zurück zum Zitat T.G. Langdon, Deformation Mechanism in HCP Metals at Elevated Temperatures -I. Creep Behavior of Magnesium, Acta Metall., 1981, 29, p 1969–1982CrossRef T.G. Langdon, Deformation Mechanism in HCP Metals at Elevated Temperatures -I. Creep Behavior of Magnesium, Acta Metall., 1981, 29, p 1969–1982CrossRef
45.
Zurück zum Zitat G. Tong, H. Liu, and Y. Liu, Effect of Rare Earth Additions on Microstructure and Mechanical Properties of AZ91 Magnesium Alloys, Trans. Nonferr. Met. Soc. China, 2010, 20, p s336–s340CrossRef G. Tong, H. Liu, and Y. Liu, Effect of Rare Earth Additions on Microstructure and Mechanical Properties of AZ91 Magnesium Alloys, Trans. Nonferr. Met. Soc. China, 2010, 20, p s336–s340CrossRef
46.
Zurück zum Zitat R. Mahmudi and S. Moeendarbari, Effects of Sn Additions on the Microstructure and Impression Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 566, p 30–39CrossRef R. Mahmudi and S. Moeendarbari, Effects of Sn Additions on the Microstructure and Impression Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 566, p 30–39CrossRef
47.
Zurück zum Zitat D. Amberger, P. Eisenlohr, and M. Göken, Microstructural Evolution During Creep of Ca-Containing AZ91, Mater. Sci. Eng. A, 2009, 510-511, p 398–402CrossRef D. Amberger, P. Eisenlohr, and M. Göken, Microstructural Evolution During Creep of Ca-Containing AZ91, Mater. Sci. Eng. A, 2009, 510-511, p 398–402CrossRef
48.
Zurück zum Zitat Q. Wang, W. Chen, W. Ding, Y. Zhu, and M. Mabuchi, Effect of Sb on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy, Metall. Mater. Trans. A, 2001, 32(March), p 787–794CrossRef Q. Wang, W. Chen, W. Ding, Y. Zhu, and M. Mabuchi, Effect of Sb on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy, Metall. Mater. Trans. A, 2001, 32(March), p 787–794CrossRef
49.
Zurück zum Zitat B. Nami, S.G. Shabestari, H. Razavi, S. Mirdamadi, and S.M. Miresmaeili, Effect of Ca, RE Elements and Semi-Solid Processing on the Microstructure and Creep Properties of AZ91 Alloy, Mater. Sci. Eng. A, 2011, 528(3), p 1261–1267CrossRef B. Nami, S.G. Shabestari, H. Razavi, S. Mirdamadi, and S.M. Miresmaeili, Effect of Ca, RE Elements and Semi-Solid Processing on the Microstructure and Creep Properties of AZ91 Alloy, Mater. Sci. Eng. A, 2011, 528(3), p 1261–1267CrossRef
Metadaten
Titel
Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy
verfasst von
Peiman Shahbeigi Roodposhti
Apu Sarkar
Korukonda L. Murty
Ronald O. Scattergood
Publikationsdatum
13.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2222-1

Weitere Artikel der Ausgabe 9/2016

Journal of Materials Engineering and Performance 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.