Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2017

19.05.2017

Effect of the Addition of Zn on the Microstructure and Mechanical Properties of 5083 Alloy

verfasst von: Jianchao Shi, Hongjie Luo, Yongliang Mu, Guangchun Yao

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the effect of alloying element Zn on microstructure and prosperity of 5083 Al alloy was investigated. The grain sizes of 5083 and 5083 + Zn alloys were refined to <200 nm by appropriate rolling processes. The microhardness and tensile tests were conducted. The results showed that the dislocation density evaluated by microhardness of rolled 5083 + Zn alloys increases from 1.90 × 1013 to 2.57 × 1013 with increasing Zn contents. The tensile tests showed that the ultimate tensile strength of rolled 5083 alloy doubled when Zn was introduced, while the uniform elongation pronounced decreased. The yield strength of 5083 + Zn alloys increases with Zn contents. However, the strain hardening rate for the rolled alloys was decreased with increasing Zn contents. Solid solution strengthen and precipitation strengthen due to addition of Zn were responsible for the increase in yield strength and ultimate tensile strength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar, Texture Development in Al/Al2O3 MMCs Produced by Anodizing and ARB, Mater. Sci. Eng. A, 2011, 528, p 3573–3580CrossRef R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar, Texture Development in Al/Al2O3 MMCs Produced by Anodizing and ARB, Mater. Sci. Eng. A, 2011, 528, p 3573–3580CrossRef
2.
Zurück zum Zitat R. Jamaati and M.R. Toroghinejad, High-Strength and Highly-Uniform Composite Produced by Anodizing and Accumulative Roll Bonding Processes, Mater. Des., 2013, 31, p 4816–4822CrossRef R. Jamaati and M.R. Toroghinejad, High-Strength and Highly-Uniform Composite Produced by Anodizing and Accumulative Roll Bonding Processes, Mater. Des., 2013, 31, p 4816–4822CrossRef
3.
Zurück zum Zitat H. Matsunoshita, K. Edalati, M. Furui, and Z. Horita, Ultrafine-Grained Magnesium–Lithium Alloy Processed by High-Pressure Torsion: Low-Temperature Superplasticity and Potential for Hydroforming, Mater. Sci. Eng. A, 2015, 640, p 443–448CrossRef H. Matsunoshita, K. Edalati, M. Furui, and Z. Horita, Ultrafine-Grained Magnesium–Lithium Alloy Processed by High-Pressure Torsion: Low-Temperature Superplasticity and Potential for Hydroforming, Mater. Sci. Eng. A, 2015, 640, p 443–448CrossRef
4.
Zurück zum Zitat X. Wang, M.G. Nie, C.T. Wang, S.C. Wang, and N. Gao, Microhardness and Corrosion Properties of Hypoeutectic Al–7Si Alloy Processed by High-Pressure Torsion, Mater. Des., 2015, 83, p 193–202CrossRef X. Wang, M.G. Nie, C.T. Wang, S.C. Wang, and N. Gao, Microhardness and Corrosion Properties of Hypoeutectic Al–7Si Alloy Processed by High-Pressure Torsion, Mater. Des., 2015, 83, p 193–202CrossRef
5.
Zurück zum Zitat A.Y. Khereddine, F.H. Larbi, H. Azzeddine, T. Baudin, F. Brisset, A.-L. Helbert, M.-H. Mathon, M. Kawasaki, D. Bradai, and T.G. Langdon, Microstructures and Textures of a Cu–Ni–Si Alloy Processed by High-Pressure Torsion, J. Alloys Compd., 2013, 574, p 361–367CrossRef A.Y. Khereddine, F.H. Larbi, H. Azzeddine, T. Baudin, F. Brisset, A.-L. Helbert, M.-H. Mathon, M. Kawasaki, D. Bradai, and T.G. Langdon, Microstructures and Textures of a Cu–Ni–Si Alloy Processed by High-Pressure Torsion, J. Alloys Compd., 2013, 574, p 361–367CrossRef
6.
Zurück zum Zitat W. Guo, Q.D. Wang, B. Ye, X.C. Li, X.T. Liu, and H. Zhou, Microstructural Refinement and Homogenization of Mg–SiC Nanocomposites by Cyclic Extrusion Compression, Mater. Sci. Eng., A, 2012, 556, p 267–270CrossRef W. Guo, Q.D. Wang, B. Ye, X.C. Li, X.T. Liu, and H. Zhou, Microstructural Refinement and Homogenization of Mg–SiC Nanocomposites by Cyclic Extrusion Compression, Mater. Sci. Eng., A, 2012, 556, p 267–270CrossRef
7.
Zurück zum Zitat Y.J. Chen, Q.D. Wang, H.J. Roven, M. Karlsen, Y.D. Yu, M.P. Liu, and J. Hjelen, Microstructure Evolution in Magnesium Alloy AZ31 During Cyclic Extrusion Compression, J. Alloys Compd., 2008, 462, p 192–200CrossRef Y.J. Chen, Q.D. Wang, H.J. Roven, M. Karlsen, Y.D. Yu, M.P. Liu, and J. Hjelen, Microstructure Evolution in Magnesium Alloy AZ31 During Cyclic Extrusion Compression, J. Alloys Compd., 2008, 462, p 192–200CrossRef
8.
Zurück zum Zitat B.J. Han and Z. Xu, Grain Refinement Under Multi-Axial Forging in Fe–32%Ni Alloy, J. Alloys Compd., 2008, 457, p 279–285CrossRef B.J. Han and Z. Xu, Grain Refinement Under Multi-Axial Forging in Fe–32%Ni Alloy, J. Alloys Compd., 2008, 457, p 279–285CrossRef
9.
Zurück zum Zitat Z.D. Zhao, Q. Chen, C.K. Hu, and D.Y. Shu, Microstructure and Mechanical Properties of SPD-Processed an as-cast AZ91D+ Y Magnesium Alloy by Equal Channel Angular Extrusion and Multi-Axial Forging, Mater. Des., 2009, 30, p 4557–4561CrossRef Z.D. Zhao, Q. Chen, C.K. Hu, and D.Y. Shu, Microstructure and Mechanical Properties of SPD-Processed an as-cast AZ91D+ Y Magnesium Alloy by Equal Channel Angular Extrusion and Multi-Axial Forging, Mater. Des., 2009, 30, p 4557–4561CrossRef
10.
Zurück zum Zitat F. Khodabakhshi, M. Haghshenas, H. Eskandari, and B. Koohbor, Hardness–Strength Relationships in Fine and Ultra-Fine Grained Metals Processed Through Constrained Groove Pressing, Mater. Sci. Eng. A, 2015, 636, p 331–339CrossRef F. Khodabakhshi, M. Haghshenas, H. Eskandari, and B. Koohbor, Hardness–Strength Relationships in Fine and Ultra-Fine Grained Metals Processed Through Constrained Groove Pressing, Mater. Sci. Eng. A, 2015, 636, p 331–339CrossRef
11.
Zurück zum Zitat J. Zrnik, T. Kovarik, Z. Novy, and M. Cieslar, Ultrafine-Grained Structure Development and Deformation Behavior of Aluminium Processed by Constrained Groove Pressing, Mater. Sci. Eng., A, 2009, 503, p 126–129CrossRef J. Zrnik, T. Kovarik, Z. Novy, and M. Cieslar, Ultrafine-Grained Structure Development and Deformation Behavior of Aluminium Processed by Constrained Groove Pressing, Mater. Sci. Eng., A, 2009, 503, p 126–129CrossRef
12.
Zurück zum Zitat G.G. Maier, E.G. Astafurova, H.J. Maier, E.V. Naydenkin, G.I. Raab, P.D. Odessky, and S.V. Dobatkin, Annealing Behavior of Ultrafine Grained Structure in Low-Carbon Steel Produced by Equal Channel Angular Pressing, Mater. Sci. Eng., A, 2013, 581, p 104–107CrossRef G.G. Maier, E.G. Astafurova, H.J. Maier, E.V. Naydenkin, G.I. Raab, P.D. Odessky, and S.V. Dobatkin, Annealing Behavior of Ultrafine Grained Structure in Low-Carbon Steel Produced by Equal Channel Angular Pressing, Mater. Sci. Eng., A, 2013, 581, p 104–107CrossRef
13.
Zurück zum Zitat H. Shahmir, M.N. Ahmadabadi, M.M. Arani, and T.G. Langdon, The Processing of NiTi Shape Memory Alloys by Equal-Channel Angular Pressing at Room Temperature, Mater. Sci. Eng., A, 2013, 576, p 178–184CrossRef H. Shahmir, M.N. Ahmadabadi, M.M. Arani, and T.G. Langdon, The Processing of NiTi Shape Memory Alloys by Equal-Channel Angular Pressing at Room Temperature, Mater. Sci. Eng., A, 2013, 576, p 178–184CrossRef
14.
Zurück zum Zitat E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, and M. Vedani, Microstructure, Mechanical Behavior and Low Temperature Superplasticity of ECAP Processed ZM21 Mg Alloy, J. Alloys Compd., 2015, 638, p 267–276CrossRef E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, and M. Vedani, Microstructure, Mechanical Behavior and Low Temperature Superplasticity of ECAP Processed ZM21 Mg Alloy, J. Alloys Compd., 2015, 638, p 267–276CrossRef
15.
Zurück zum Zitat E. Darmiani, I. Danaee, M.A. Golozar, and M.R. Toroghinejad, Corrosion Investigation of Al–SiC Nano-Composite Fabricated by Accumulative Roll Bonding (ARB) Process, J. Alloys Compd., 2013, 552, p 31–39CrossRef E. Darmiani, I. Danaee, M.A. Golozar, and M.R. Toroghinejad, Corrosion Investigation of Al–SiC Nano-Composite Fabricated by Accumulative Roll Bonding (ARB) Process, J. Alloys Compd., 2013, 552, p 31–39CrossRef
16.
Zurück zum Zitat L.H. Su, C. Lu, A.A. Gazder, A.A. Saleh, G.Y. Deng, K. Tieu, and H.J. Li, Shear Texture Gradient in AA6061 Aluminum Alloy Processed by Accumulative Roll Bonding with High Roll Roughness, J. Alloys Compd., 2014, 594, p 12–22CrossRef L.H. Su, C. Lu, A.A. Gazder, A.A. Saleh, G.Y. Deng, K. Tieu, and H.J. Li, Shear Texture Gradient in AA6061 Aluminum Alloy Processed by Accumulative Roll Bonding with High Roll Roughness, J. Alloys Compd., 2014, 594, p 12–22CrossRef
17.
Zurück zum Zitat Y.F. Sun, N. Tsuji, H. Fujii, and F.S. Li, Cu/Zr Nanoscaled Multi-Stacks Fabricated by Accumulative Roll Bonding, J. Alloys Compd., 2010, 504, p 443–447CrossRef Y.F. Sun, N. Tsuji, H. Fujii, and F.S. Li, Cu/Zr Nanoscaled Multi-Stacks Fabricated by Accumulative Roll Bonding, J. Alloys Compd., 2010, 504, p 443–447CrossRef
18.
Zurück zum Zitat T. Hu, K. Ma, T.D. Topping, and J.M. Schoenung, Precipitation Phenomena in an Ultrafine-Grained Al Alloy, Acta Mater., 2013, 61, p 2163–2178CrossRef T. Hu, K. Ma, T.D. Topping, and J.M. Schoenung, Precipitation Phenomena in an Ultrafine-Grained Al Alloy, Acta Mater., 2013, 61, p 2163–2178CrossRef
19.
Zurück zum Zitat Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu, Effect of the Zener–Hollomon Parameter on the Microstructures and Mechanical Properties of Cu Subjected to Plastic Deformation, Acta Mater., 2009, 57, p 761–772CrossRef Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu, Effect of the Zener–Hollomon Parameter on the Microstructures and Mechanical Properties of Cu Subjected to Plastic Deformation, Acta Mater., 2009, 57, p 761–772CrossRef
20.
Zurück zum Zitat W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, and K. Lu, Nitriding Iron at Lower Temperatures, Science, 2003, 299, p 686–688CrossRef W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, and K. Lu, Nitriding Iron at Lower Temperatures, Science, 2003, 299, p 686–688CrossRef
21.
Zurück zum Zitat S. Cheng, J. Xie, A.D. Stoica, X.-L. Wang, J.A. Horton, D.W. Brown, H. Choo, and P.K. Liaw, Cyclic Deformation of Nanocrystalline and Ultrafine-Grained Nickel, Acta Mater., 2009, 57, p 1272–1280CrossRef S. Cheng, J. Xie, A.D. Stoica, X.-L. Wang, J.A. Horton, D.W. Brown, H. Choo, and P.K. Liaw, Cyclic Deformation of Nanocrystalline and Ultrafine-Grained Nickel, Acta Mater., 2009, 57, p 1272–1280CrossRef
22.
Zurück zum Zitat H.Y. Zhang, N. Maljkovic, and B.S. Mitchell, Structure and Interfacial Properties of Nanocrystalline Aluminum/Mullite Composites, Mater. Sci. Eng., A, 2002, 326, p 317–323CrossRef H.Y. Zhang, N. Maljkovic, and B.S. Mitchell, Structure and Interfacial Properties of Nanocrystalline Aluminum/Mullite Composites, Mater. Sci. Eng., A, 2002, 326, p 317–323CrossRef
23.
Zurück zum Zitat K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, and C. Koch, Effect of Stacking Fault Energy on Mechanical Behavior of Bulk Nanocrystalline Cu and Cu Alloys, Acta Mater., 2011, 59, p 5758–5764CrossRef K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, and C. Koch, Effect of Stacking Fault Energy on Mechanical Behavior of Bulk Nanocrystalline Cu and Cu Alloys, Acta Mater., 2011, 59, p 5758–5764CrossRef
24.
Zurück zum Zitat T. Ogura, T. Otani, A. Hirose, and T. Sato, Improvement of Strength and Ductility of an Al–Zn–Mg Alloy by Controlling Grain Size and Precipitate Microstructure with Mn and Ag Addition, Mater. Sci. Eng. A, 2013, 580, p 288–293CrossRef T. Ogura, T. Otani, A. Hirose, and T. Sato, Improvement of Strength and Ductility of an Al–Zn–Mg Alloy by Controlling Grain Size and Precipitate Microstructure with Mn and Ag Addition, Mater. Sci. Eng. A, 2013, 580, p 288–293CrossRef
25.
Zurück zum Zitat J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, An Investigation of Microstructural Stability in an Alsingle Bond Mg Alloy with Submicrometer Grain Size, Acta Mater., 1996, 44, p 2973–2982CrossRef J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, An Investigation of Microstructural Stability in an Alsingle Bond Mg Alloy with Submicrometer Grain Size, Acta Mater., 1996, 44, p 2973–2982CrossRef
26.
Zurück zum Zitat M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, and T.G. Langdon, Lavernia, Influence of Magnesium on Grain Refinement and Ductility in a Dilute Al–Sc Alloy, Acta Mater., 2001, 49, p 3829–3838CrossRef M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, and T.G. Langdon, Lavernia, Influence of Magnesium on Grain Refinement and Ductility in a Dilute Al–Sc Alloy, Acta Mater., 2001, 49, p 3829–3838CrossRef
27.
Zurück zum Zitat Y. Li, Z. Zhang, R. Vogt, J.M. Schoenung, and E.J. Lavernia, Boundaries and interfaces in ultrafine grain composites, Acta Mater., 2011, 59, p 7206–7218CrossRef Y. Li, Z. Zhang, R. Vogt, J.M. Schoenung, and E.J. Lavernia, Boundaries and interfaces in ultrafine grain composites, Acta Mater., 2011, 59, p 7206–7218CrossRef
28.
Zurück zum Zitat C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy, Acta Mater., 2003, 51, p 6139–6149CrossRef C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy, Acta Mater., 2003, 51, p 6139–6149CrossRef
29.
Zurück zum Zitat K. Jan, K. Martin, and S. Radan, A Model of Ultrafine Microstructure Evolution in Materials Deformed by High-Pressure Torsion, Acta Mater., 2009, 57, p 739–748CrossRef K. Jan, K. Martin, and S. Radan, A Model of Ultrafine Microstructure Evolution in Materials Deformed by High-Pressure Torsion, Acta Mater., 2009, 57, p 739–748CrossRef
30.
Zurück zum Zitat S.C. Yoon, Z.J. Horita, and H.S. Kim, Finite Element Analysis of Plastic Deformation Behavior During High Pressure Torsion Processing, J. Mater. Process. Technol., 2008, 201, p 32–36CrossRef S.C. Yoon, Z.J. Horita, and H.S. Kim, Finite Element Analysis of Plastic Deformation Behavior During High Pressure Torsion Processing, J. Mater. Process. Technol., 2008, 201, p 32–36CrossRef
31.
Zurück zum Zitat A. Nazari, J.A. Mohandesi, and S. Tavareh, Microhardness Profile Prediction of a Graded Steel by Strain Gradient Plasticity Theory, Comput. Mater. Sci., 2011, 50, p 1781–1784CrossRef A. Nazari, J.A. Mohandesi, and S. Tavareh, Microhardness Profile Prediction of a Graded Steel by Strain Gradient Plasticity Theory, Comput. Mater. Sci., 2011, 50, p 1781–1784CrossRef
32.
Zurück zum Zitat S. Graça, R. Colaço, P.A. Carvalho, and R. Vilar, Determination of Dislocation Density from Hardness Measurements in Metals, Mater. Lett., 2008, 62, p 3812–3814CrossRef S. Graça, R. Colaço, P.A. Carvalho, and R. Vilar, Determination of Dislocation Density from Hardness Measurements in Metals, Mater. Lett., 2008, 62, p 3812–3814CrossRef
33.
Zurück zum Zitat R. Jamaati, M.R. Toroghinejad, S. Amirkhanlou, and H. Edris, Strengthening Mechanisms in Nanostructured Interstitial Free Steel Deformed to High Strain, Metall. Mater. Trans. A, 2015, 46, p 4013–4019CrossRef R. Jamaati, M.R. Toroghinejad, S. Amirkhanlou, and H. Edris, Strengthening Mechanisms in Nanostructured Interstitial Free Steel Deformed to High Strain, Metall. Mater. Trans. A, 2015, 46, p 4013–4019CrossRef
34.
Zurück zum Zitat M. Reihanian, R. Ebrahimi, N. Tsuji, and M.M. Moshksar, Analysis of the Mechanical Properties and Deformation Behavior of Nanostructured Commercially Pure Al Processed by Equal Channel Angular Pressing (ECAP), Mater. Sci. Eng., A, 2008, 473, p 189–194CrossRef M. Reihanian, R. Ebrahimi, N. Tsuji, and M.M. Moshksar, Analysis of the Mechanical Properties and Deformation Behavior of Nanostructured Commercially Pure Al Processed by Equal Channel Angular Pressing (ECAP), Mater. Sci. Eng., A, 2008, 473, p 189–194CrossRef
35.
Zurück zum Zitat B.Q. Han and D.C. Dunand, Microstructure and Mechanical Properties of Magnesium Containing High Volume Fractions of Yttria Dispersoids, Mater. Sci. Eng., A, 2000, 277, p 297–304CrossRef B.Q. Han and D.C. Dunand, Microstructure and Mechanical Properties of Magnesium Containing High Volume Fractions of Yttria Dispersoids, Mater. Sci. Eng., A, 2000, 277, p 297–304CrossRef
36.
Zurück zum Zitat Y.M. Wang and E. Ma, Three Strategies to Achieve Uniform Tensile Deformation in a Nanostructured Metal, Acta Mater., 2004, 52, p 1699–1709CrossRef Y.M. Wang and E. Ma, Three Strategies to Achieve Uniform Tensile Deformation in a Nanostructured Metal, Acta Mater., 2004, 52, p 1699–1709CrossRef
37.
Zurück zum Zitat J.D. Embury and R.B. Nicholson, The Nucleation of Precipitates: the System Al–Zn–Mg, Acta Metall., 1965, 13, p 403–417CrossRef J.D. Embury and R.B. Nicholson, The Nucleation of Precipitates: the System Al–Zn–Mg, Acta Metall., 1965, 13, p 403–417CrossRef
38.
Zurück zum Zitat M. Militzer, W.P. Sun, and J.J. Jonas, Modelling the Effect of Deformation-Induced Vacancies on Segregation and Precipitation, Acta Metall., 1994, 42, p 133–141CrossRef M. Militzer, W.P. Sun, and J.J. Jonas, Modelling the Effect of Deformation-Induced Vacancies on Segregation and Precipitation, Acta Metall., 1994, 42, p 133–141CrossRef
39.
Zurück zum Zitat G. Sha and A. Cerezo, Early-Stage Precipitation in Al–Zn–Mg–Cu Alloy (7050), Acta Mater., 2004, 52, p 4503–4516CrossRef G. Sha and A. Cerezo, Early-Stage Precipitation in Al–Zn–Mg–Cu Alloy (7050), Acta Mater., 2004, 52, p 4503–4516CrossRef
40.
Zurück zum Zitat R. Ferradut, A. Somoza, and A. Tolley, Microstructural Evolution of 7012 Alloy During the Early Stages of Artificial Ageing, Acta Mater., 1999, 47, p 4355–4364CrossRef R. Ferradut, A. Somoza, and A. Tolley, Microstructural Evolution of 7012 Alloy During the Early Stages of Artificial Ageing, Acta Mater., 1999, 47, p 4355–4364CrossRef
41.
Zurück zum Zitat D.L. Sun, Z.X. Zhou, D.H. Ping, D.Z. Yang, and D.X. Li, In situ Observation of G. P. Zones in an Al–Zn–Mg Alloy Under Irradiation of Electron Beam, J. Mater. Sci. Lett., 2001, 20, p 1413–1414CrossRef D.L. Sun, Z.X. Zhou, D.H. Ping, D.Z. Yang, and D.X. Li, In situ Observation of G. P. Zones in an Al–Zn–Mg Alloy Under Irradiation of Electron Beam, J. Mater. Sci. Lett., 2001, 20, p 1413–1414CrossRef
Metadaten
Titel
Effect of the Addition of Zn on the Microstructure and Mechanical Properties of 5083 Alloy
verfasst von
Jianchao Shi
Hongjie Luo
Yongliang Mu
Guangchun Yao
Publikationsdatum
19.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2676-9

Weitere Artikel der Ausgabe 6/2017

Journal of Materials Engineering and Performance 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.