Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2017

08.05.2017

Effect of Hydrogen Charging on the Stress Corrosion Behavior of 2205 Duplex Stainless Steel Under 3.5 wt.% NaCl Thin Electrolyte Layer

verfasst von: Tianliang Zhao, Zhiyong Liu, Shanshan Hu, Cuiwei Du, Xiaogang Li

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of hydrogen charging on the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) under 3.5 wt.% NaCl thin electrolyte layer was investigated on precharged samples through hydrogen determination, electrochemical measurement, and slow strain rate tensile test. Results show that hydrogen charging weakens the passive film without inducing any obvious trace of localized anodic dissolution. Therefore, hydrogen charging increases the SCC susceptibility of 2205 DSS mainly through mechanism of hydrogen embrittlement rather than mechanism of localized anodic dissolution. 2205 DSS shows a more susceptibility to hydrogen under the TEL when hydrogen charging current density (HCCD) is between 20 and 50 mA cm−2. The increasing trend is remarkable when hydrogen charging current density increases from 20 to 50 mA cm−2 and fades after 50 mA cm−2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Li, D. Zhang, Z. Liu, Z. Li, C. Du, and C. Dong, Materials Science: Share Corrosion Data, Nature, 2015, 527, p 441–442CrossRef X. Li, D. Zhang, Z. Liu, Z. Li, C. Du, and C. Dong, Materials Science: Share Corrosion Data, Nature, 2015, 527, p 441–442CrossRef
2.
Zurück zum Zitat X. Liao, F. Cao, L. Zheng, W. Liu, A. Chen, J. Zhang, and C. Cao, Corrosion Behaviour of Copper under Chloride-containing Thin Electrolyte Layer, Corros. Sci., 2011, 53, p 3289–3298CrossRef X. Liao, F. Cao, L. Zheng, W. Liu, A. Chen, J. Zhang, and C. Cao, Corrosion Behaviour of Copper under Chloride-containing Thin Electrolyte Layer, Corros. Sci., 2011, 53, p 3289–3298CrossRef
3.
Zurück zum Zitat Y.L. Cheng, Z. Zhang, F.H. Cao, J.F. Li, J.Q. Zhang, J.M. Wang, and C.N. Cao, A Study of the Corrosion of Aluminum Alloy 2024-T3 under Thin Electrolyte Layers, Corros. Sci., 2004, 46, p 1649–1667CrossRef Y.L. Cheng, Z. Zhang, F.H. Cao, J.F. Li, J.Q. Zhang, J.M. Wang, and C.N. Cao, A Study of the Corrosion of Aluminum Alloy 2024-T3 under Thin Electrolyte Layers, Corros. Sci., 2004, 46, p 1649–1667CrossRef
4.
Zurück zum Zitat G. Hinds and A. Turnbull, Threshold Temperature for Stress Corrosion Cracking of Duplex Stainless Steel under Evaporative Seawater Conditions, Corrosion, 2008, 64, p 101–106CrossRef G. Hinds and A. Turnbull, Threshold Temperature for Stress Corrosion Cracking of Duplex Stainless Steel under Evaporative Seawater Conditions, Corrosion, 2008, 64, p 101–106CrossRef
5.
Zurück zum Zitat H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, X.G. Li, D.W. Zhang, and Z.Y. Cui, Stress Corrosion Cracking of E690 Steel as a Welded Joint in a Simulated Marine Atmosphere Containing Sulphur Dioxide, Corros. Sci., 2015, 100, p 627–641CrossRef H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, X.G. Li, D.W. Zhang, and Z.Y. Cui, Stress Corrosion Cracking of E690 Steel as a Welded Joint in a Simulated Marine Atmosphere Containing Sulphur Dioxide, Corros. Sci., 2015, 100, p 627–641CrossRef
6.
Zurück zum Zitat T. Zhang, C. Chen, Y. Shao, G. Meng, F. Wang, X. Li, and C. Dong, Corrosion of Pure Magnesium under Thin Electrolyte Layers, Electrochim. Acta, 2008, 53, p 7921–7931CrossRef T. Zhang, C. Chen, Y. Shao, G. Meng, F. Wang, X. Li, and C. Dong, Corrosion of Pure Magnesium under Thin Electrolyte Layers, Electrochim. Acta, 2008, 53, p 7921–7931CrossRef
7.
Zurück zum Zitat H.R. Zhou, X.G. Li, J. Ma, C.F. Dong, and Y.Z. Huang, Dependence of the Corrosion Behavior of Aluminum Alloy 7075 on the Thin Electrolyte Layers, Mater. Sci. Eng. B, 2009, 162, p 1–8CrossRef H.R. Zhou, X.G. Li, J. Ma, C.F. Dong, and Y.Z. Huang, Dependence of the Corrosion Behavior of Aluminum Alloy 7075 on the Thin Electrolyte Layers, Mater. Sci. Eng. B, 2009, 162, p 1–8CrossRef
8.
Zurück zum Zitat H.P. Wang, S.C. Ding, J. Zhu, Z. Zhang, J.Q. Zhang, and C.N. Cao, Corrosion Behavior of 907 Steel under Thin Electrolyte Layers of Artificial Seawater, J. Cent. South Univ., 2015, 22, p 806–814CrossRef H.P. Wang, S.C. Ding, J. Zhu, Z. Zhang, J.Q. Zhang, and C.N. Cao, Corrosion Behavior of 907 Steel under Thin Electrolyte Layers of Artificial Seawater, J. Cent. South Univ., 2015, 22, p 806–814CrossRef
9.
Zurück zum Zitat Y. Huang and Y. Zhu, Hydrogen Ion Reduction in the Process of Iron Rusting, Corros. Sci., 2005, 47, p 1545–1554CrossRef Y. Huang and Y. Zhu, Hydrogen Ion Reduction in the Process of Iron Rusting, Corros. Sci., 2005, 47, p 1545–1554CrossRef
10.
Zurück zum Zitat Y. Huang, X. Dong, and J. Chen, Electrochemical Characteristics of an Austenitic Stainless Steel under Simulated Solution Film Formed in Marine Atmosphere, Int. J. Electrochem Sci., 2011, 6, p 5597–5604 Y. Huang, X. Dong, and J. Chen, Electrochemical Characteristics of an Austenitic Stainless Steel under Simulated Solution Film Formed in Marine Atmosphere, Int. J. Electrochem Sci., 2011, 6, p 5597–5604
11.
Zurück zum Zitat R. Nishimura, D. Shiraishi, and Y. Maeda, Hydrogen Permeation and Corrosion Behavior of High Strength Steel MCM 430 in Cyclic Wet-Dry SO2 Environment, Corros. Sci., 2004, 46, p 225–243CrossRef R. Nishimura, D. Shiraishi, and Y. Maeda, Hydrogen Permeation and Corrosion Behavior of High Strength Steel MCM 430 in Cyclic Wet-Dry SO2 Environment, Corros. Sci., 2004, 46, p 225–243CrossRef
12.
Zurück zum Zitat E. Akiyama, S. Li, T. Shinohara, Z. Zhang, and K. Tsuzaki, Hydrogen Entry into Fe and High Strength Steels under Simulated Atmospheric Corrosion, Electrochim. Acta, 2011, 56, p 1799–1805CrossRef E. Akiyama, S. Li, T. Shinohara, Z. Zhang, and K. Tsuzaki, Hydrogen Entry into Fe and High Strength Steels under Simulated Atmospheric Corrosion, Electrochim. Acta, 2011, 56, p 1799–1805CrossRef
13.
Zurück zum Zitat E. Akiyama, K. Matsukado, M. Wang, and K. Tsuzaki, Evaluation of Hydrogen Entry into High Strength Steel under Atmospheric Corrosion, Corros. Sci., 2010, 52, p 2758–2765CrossRef E. Akiyama, K. Matsukado, M. Wang, and K. Tsuzaki, Evaluation of Hydrogen Entry into High Strength Steel under Atmospheric Corrosion, Corros. Sci., 2010, 52, p 2758–2765CrossRef
14.
Zurück zum Zitat R.B. Hamzah and M.J. Robinson, Hydrogen Absorption Resulting from the Simulated Pitting Corrosion of Carbon-Manganese Steels, Corros. Sci., 1987, 27, p 971–979CrossRef R.B. Hamzah and M.J. Robinson, Hydrogen Absorption Resulting from the Simulated Pitting Corrosion of Carbon-Manganese Steels, Corros. Sci., 1987, 27, p 971–979CrossRef
15.
Zurück zum Zitat J.R. Galvele, Tafel’s Law in Pitting Corrosion and Crevice Corrosion Susceptibility, Corros. Sci., 2005, 47, p 3053–3067CrossRef J.R. Galvele, Tafel’s Law in Pitting Corrosion and Crevice Corrosion Susceptibility, Corros. Sci., 2005, 47, p 3053–3067CrossRef
16.
Zurück zum Zitat A.D. Keitelman, S.M. Gravano, and J.R. Galvele, Localized Acidification as the Cause of Passivity Breakdown of High Purity Zinc, Corros. Sci., 1984, 24, p 535–545CrossRef A.D. Keitelman, S.M. Gravano, and J.R. Galvele, Localized Acidification as the Cause of Passivity Breakdown of High Purity Zinc, Corros. Sci., 1984, 24, p 535–545CrossRef
17.
Zurück zum Zitat H. Ma, C. Du, Z. Liu, W. Hao, X. Li, and C. Liu, Stress Corrosion Behaviors of E690 High-strength Steel in SO2-polluted Marine Atmosphere, Acta Metall. Sin., 2016, 52, p 331–340 H. Ma, C. Du, Z. Liu, W. Hao, X. Li, and C. Liu, Stress Corrosion Behaviors of E690 High-strength Steel in SO2-polluted Marine Atmosphere, Acta Metall. Sin., 2016, 52, p 331–340
18.
Zurück zum Zitat S. Li, Z. Zhang, E. Akiyama, K. Tsuzaki, and B. Zhang, Evaluation of Susceptibility of High Strength Steels to Delayed Fracture by Using Cyclic Corrosion Test and Slow Strain Rate Test, Corros. Sci., 2010, 52, p 1660–1667CrossRef S. Li, Z. Zhang, E. Akiyama, K. Tsuzaki, and B. Zhang, Evaluation of Susceptibility of High Strength Steels to Delayed Fracture by Using Cyclic Corrosion Test and Slow Strain Rate Test, Corros. Sci., 2010, 52, p 1660–1667CrossRef
19.
Zurück zum Zitat T. Tsuru, Y. Huang, M.R. Ali, and A. Nishikata, Hydrogen Entry Into Steel During Atmospheric Corrosion Process, Corros. Sci., 2005, 47, p 2431–2440CrossRef T. Tsuru, Y. Huang, M.R. Ali, and A. Nishikata, Hydrogen Entry Into Steel During Atmospheric Corrosion Process, Corros. Sci., 2005, 47, p 2431–2440CrossRef
20.
Zurück zum Zitat D. Zhang and Y. Li, Effect of Humidity on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel Exposed to Simulated Marine Atmosphere, China Nonferrous Met., 2010, 20, p 476–482CrossRef D. Zhang and Y. Li, Effect of Humidity on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel Exposed to Simulated Marine Atmosphere, China Nonferrous Met., 2010, 20, p 476–482CrossRef
21.
Zurück zum Zitat H. Luo, C.F. Dong, K. Xiao, and X.G. Li, Characterization of Passive Film on 2205 Duplex Stainless Steel in Sodium Thiosulphate Solution, Appl. Surf. Sci., 2011, 258, p 631–639CrossRef H. Luo, C.F. Dong, K. Xiao, and X.G. Li, Characterization of Passive Film on 2205 Duplex Stainless Steel in Sodium Thiosulphate Solution, Appl. Surf. Sci., 2011, 258, p 631–639CrossRef
22.
Zurück zum Zitat J. Lv, T. Liang, C. Wang, and L. Dong, Effect of Ultrafine Grain on Tensile Behaviour and Corrosion Resistance of the Duplex Stainless Steel, Mater. Sci. Eng. C, 2016, 62, p 558–563CrossRef J. Lv, T. Liang, C. Wang, and L. Dong, Effect of Ultrafine Grain on Tensile Behaviour and Corrosion Resistance of the Duplex Stainless Steel, Mater. Sci. Eng. C, 2016, 62, p 558–563CrossRef
23.
Zurück zum Zitat C. Örnek and D.L. Engelberg, Towards Understanding the Effect of Deformation Mode on Stress Corrosion Cracking Susceptibility of Grade 2205 Duplex Stainless Steel, Mater. Sci. Eng. A, 2016, 666, p 269–279CrossRef C. Örnek and D.L. Engelberg, Towards Understanding the Effect of Deformation Mode on Stress Corrosion Cracking Susceptibility of Grade 2205 Duplex Stainless Steel, Mater. Sci. Eng. A, 2016, 666, p 269–279CrossRef
24.
Zurück zum Zitat L.Q. Guo, Y. Bai, B.Z. Xu, W. Pan, J.X. Li, and L.J. Qiao, Effect of Hydrogen on Pitting Susceptibility of 2507 Duplex Stainless Steel, Corros. Sci., 2013, 70, p 140–144CrossRef L.Q. Guo, Y. Bai, B.Z. Xu, W. Pan, J.X. Li, and L.J. Qiao, Effect of Hydrogen on Pitting Susceptibility of 2507 Duplex Stainless Steel, Corros. Sci., 2013, 70, p 140–144CrossRef
25.
Zurück zum Zitat W.T. Tsai and M.S. Chen, Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in Concentrated NaCl Solution, Corros. Sci., 2000, 42, p 545–559CrossRef W.T. Tsai and M.S. Chen, Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in Concentrated NaCl Solution, Corros. Sci., 2000, 42, p 545–559CrossRef
26.
Zurück zum Zitat W.T. Tsai and S.L. Chou, Environmentally Assisted Cracking Behavior of Duplex Stainless Steel in Concentrated Sodium Chloride Solution, Corros. Sci., 2000, 42, p 1741–1762CrossRef W.T. Tsai and S.L. Chou, Environmentally Assisted Cracking Behavior of Duplex Stainless Steel in Concentrated Sodium Chloride Solution, Corros. Sci., 2000, 42, p 1741–1762CrossRef
27.
Zurück zum Zitat A.A. El-Yazgi and D. Hardie, The Embrittlement of a Duplex Stainless Steel by Hydrogen in a Variety of Environments, Corros. Sci., 1996, 38, p 735–744CrossRef A.A. El-Yazgi and D. Hardie, The Embrittlement of a Duplex Stainless Steel by Hydrogen in a Variety of Environments, Corros. Sci., 1996, 38, p 735–744CrossRef
28.
Zurück zum Zitat A. Turnbull, P. Nicholson, and S. Zhou, Chemistry of Concentrated Salts Formed by Evaporation of Formation Water and the Impact on Stress Corrosion Cracking of Duplex Stainless Steel, Corrosion, 2007, 63, p 555–560CrossRef A. Turnbull, P. Nicholson, and S. Zhou, Chemistry of Concentrated Salts Formed by Evaporation of Formation Water and the Impact on Stress Corrosion Cracking of Duplex Stainless Steel, Corrosion, 2007, 63, p 555–560CrossRef
29.
Zurück zum Zitat C. Örnek, S.A.M. Idris, P. Reccagni, and D.L. Engelberg, Atmospheric-Induced Stress Corrosion Cracking of Grade 2205 Duplex Stainless Steel-Effects of 475°C Embrittlement and Process Orientation, Metals, 2016, 6, p 167–188CrossRef C. Örnek, S.A.M. Idris, P. Reccagni, and D.L. Engelberg, Atmospheric-Induced Stress Corrosion Cracking of Grade 2205 Duplex Stainless Steel-Effects of 475°C Embrittlement and Process Orientation, Metals, 2016, 6, p 167–188CrossRef
30.
Zurück zum Zitat L. Wang, Y. Xing, Z. Liu, D. Zhang, C. Du, and X. Li, Erosion-Corrosion Behavior of 2205 Duplex Stainless Steel in Wet Gas Environments, J. Nat. Gas Sci. Eng., 2016, 35, p 928–93427CrossRef L. Wang, Y. Xing, Z. Liu, D. Zhang, C. Du, and X. Li, Erosion-Corrosion Behavior of 2205 Duplex Stainless Steel in Wet Gas Environments, J. Nat. Gas Sci. Eng., 2016, 35, p 928–93427CrossRef
31.
Zurück zum Zitat A. Głowacka and W.A. Świtnicki, Effect of Hydrogen Charging on the Microstructure of Duplex Stainless Steel, J. Alloys Compd., 2003, 356–357, p 701–704CrossRef A. Głowacka and W.A. Świtnicki, Effect of Hydrogen Charging on the Microstructure of Duplex Stainless Steel, J. Alloys Compd., 2003, 356–357, p 701–704CrossRef
32.
Zurück zum Zitat T. Zakroczymski, A. Glowacka, and W. Swiatnicki, Effect of Hydrogen Concentration on the Embrittlement of a Duplex Stainless Steel, Corros. Sci., 2005, 47, p 1403–1414CrossRef T. Zakroczymski, A. Glowacka, and W. Swiatnicki, Effect of Hydrogen Concentration on the Embrittlement of a Duplex Stainless Steel, Corros. Sci., 2005, 47, p 1403–1414CrossRef
33.
Zurück zum Zitat T. Zakroczymski and E. Owczarek, Electrochemical Investigation of Hydrogen Absorption in a Duplex Stainless Steel, Acta Mater., 2002, 50, p 2701–2713CrossRef T. Zakroczymski and E. Owczarek, Electrochemical Investigation of Hydrogen Absorption in a Duplex Stainless Steel, Acta Mater., 2002, 50, p 2701–2713CrossRef
34.
Zurück zum Zitat E. Owczarek and T. Zakroczymski, Hydrogen Transport in a Duplex Stainless Steel, Acta Mater., 2000, 48, p 3059–3070CrossRef E. Owczarek and T. Zakroczymski, Hydrogen Transport in a Duplex Stainless Steel, Acta Mater., 2000, 48, p 3059–3070CrossRef
35.
Zurück zum Zitat W.C. Luu, P.W. Liu, and J.K. Wu, Hydrogen Transport and Degradation of a Commercial Duplex Stainless Steel, Corros. Sci., 2002, 44, p 1783–1791CrossRef W.C. Luu, P.W. Liu, and J.K. Wu, Hydrogen Transport and Degradation of a Commercial Duplex Stainless Steel, Corros. Sci., 2002, 44, p 1783–1791CrossRef
36.
Zurück zum Zitat N. Kheradmand, R. Johnsen, J.S. Olsen, and A. Barnoush, Effect of Hydrogen on the Hardness of Different Phases in Super Duplex Stainless Steel, Int. J. Hydrogen Energy, 2015, 41, p 1106–1107 N. Kheradmand, R. Johnsen, J.S. Olsen, and A. Barnoush, Effect of Hydrogen on the Hardness of Different Phases in Super Duplex Stainless Steel, Int. J. Hydrogen Energy, 2015, 41, p 1106–1107
37.
Zurück zum Zitat R. Silverstein, O. Sobol, T. Boellinghaus, W. Unger, and D. Eliezer, Hydrogen Behavior in SAF 2205 Duplex Stainless Steel, J. Alloys Compd., 2016, 695, p 2689–2695CrossRef R. Silverstein, O. Sobol, T. Boellinghaus, W. Unger, and D. Eliezer, Hydrogen Behavior in SAF 2205 Duplex Stainless Steel, J. Alloys Compd., 2016, 695, p 2689–2695CrossRef
38.
Zurück zum Zitat R. Silverstein, D. Eliezer, B. Glam, S. Eliezer, and D. Moreno, Evaluation of Hydrogen Trapping Mechanisms During Performance of Different Hydrogen Fugacity in a Lean Duplex Stainless Steel, J. Alloys Compd., 2015, 648, p 601–608CrossRef R. Silverstein, D. Eliezer, B. Glam, S. Eliezer, and D. Moreno, Evaluation of Hydrogen Trapping Mechanisms During Performance of Different Hydrogen Fugacity in a Lean Duplex Stainless Steel, J. Alloys Compd., 2015, 648, p 601–608CrossRef
39.
Zurück zum Zitat C.F. Dong, Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effects of Hydrogen-Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen-Induced Cracking, Int. J. Hydrog. Energy, 2009, 34, p 9879–9884CrossRef C.F. Dong, Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effects of Hydrogen-Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen-Induced Cracking, Int. J. Hydrog. Energy, 2009, 34, p 9879–9884CrossRef
40.
Zurück zum Zitat Z.Y. Liu, C.F. Dong, X.G. Li, Q. Zhi, and Y.F. Cheng, Stress Corrosion Cracking of 2205 Duplex Stainless Steel in H2S–CO2 Environment, J. Mater. Sci., 2009, 44, p 4228–4234CrossRef Z.Y. Liu, C.F. Dong, X.G. Li, Q. Zhi, and Y.F. Cheng, Stress Corrosion Cracking of 2205 Duplex Stainless Steel in H2S–CO2 Environment, J. Mater. Sci., 2009, 44, p 4228–4234CrossRef
41.
Zurück zum Zitat B.T. Lu, L.J. Qiao, J.L. Luo, and K.W. Gao, Role of Hydrogen in Stress Corrosion Cracking of Austenitic Stainless Steels, Philos. Mag., 2011, 91, p 208–228CrossRef B.T. Lu, L.J. Qiao, J.L. Luo, and K.W. Gao, Role of Hydrogen in Stress Corrosion Cracking of Austenitic Stainless Steels, Philos. Mag., 2011, 91, p 208–228CrossRef
42.
Zurück zum Zitat Y. Yao, L.J. Qiao, and A.A. Volinsky, Hydrogen Effects on Stainless Steel Passive Film Fracture Studied by Nanoindentation, Corros. Sci., 2011, 53, p 2679–2683CrossRef Y. Yao, L.J. Qiao, and A.A. Volinsky, Hydrogen Effects on Stainless Steel Passive Film Fracture Studied by Nanoindentation, Corros. Sci., 2011, 53, p 2679–2683CrossRef
43.
Zurück zum Zitat M. Yan and Y. Weng, Study on Hydrogen Absorption of Pipeline Steel under Cathodic Charging, Corros. Sci., 2006, 48, p 432–444CrossRef M. Yan and Y. Weng, Study on Hydrogen Absorption of Pipeline Steel under Cathodic Charging, Corros. Sci., 2006, 48, p 432–444CrossRef
44.
Zurück zum Zitat C.W. Du, T.L. Zhao, Z.Y. Liu, X.G. Li, and D.W. Zhang, Corrosion Behavior and Characteristics of the Product Film of API, X100 Steel in Acidic Simulated Soil Solution, Int. J. Miner. Metall. Mater., 2016, 23, p 176–183CrossRef C.W. Du, T.L. Zhao, Z.Y. Liu, X.G. Li, and D.W. Zhang, Corrosion Behavior and Characteristics of the Product Film of API, X100 Steel in Acidic Simulated Soil Solution, Int. J. Miner. Metall. Mater., 2016, 23, p 176–183CrossRef
45.
Zurück zum Zitat L.J. Qiao and J.L. Luo, Hydrogen-facilitated Anodic Dissolution of Austenitic Stainless Steels, Corrosion, 1998, 54, p 281–288CrossRef L.J. Qiao and J.L. Luo, Hydrogen-facilitated Anodic Dissolution of Austenitic Stainless Steels, Corrosion, 1998, 54, p 281–288CrossRef
46.
Zurück zum Zitat F. Delaunois, A. Tshimombo, V. Stanciu, and V. Vitry, Monitoring of Chloride Stress Corrosion Cracking of Austenitic Stainless Steel: Identification of the Phases of the Corrosion Process and Use of a Modified Accelerated Test, Corros. Sci., 2016, 110, p 273–283CrossRef F. Delaunois, A. Tshimombo, V. Stanciu, and V. Vitry, Monitoring of Chloride Stress Corrosion Cracking of Austenitic Stainless Steel: Identification of the Phases of the Corrosion Process and Use of a Modified Accelerated Test, Corros. Sci., 2016, 110, p 273–283CrossRef
47.
Zurück zum Zitat B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, and Z.H. Xu, Pitting and Stress Corrosion Cracking Behavior in Welded Austenitic Stainless Steel, Electrochim. Acta, 2005, 50, p 1391–1403CrossRef B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, and Z.H. Xu, Pitting and Stress Corrosion Cracking Behavior in Welded Austenitic Stainless Steel, Electrochim. Acta, 2005, 50, p 1391–1403CrossRef
48.
Zurück zum Zitat X.W. Lei, Y.R. Feng, A.Q. Fu, J.X. Zhang, Z.Q. Bai, C.X. Yin, and C.H. Lu, Investigation of Stress Corrosion Cracking Behavior of Super 13Cr Tubing by Full-Scale Tubular Goods Corrosion Test System, Eng. Fail. Anal., 2015, 50, p 62–70CrossRef X.W. Lei, Y.R. Feng, A.Q. Fu, J.X. Zhang, Z.Q. Bai, C.X. Yin, and C.H. Lu, Investigation of Stress Corrosion Cracking Behavior of Super 13Cr Tubing by Full-Scale Tubular Goods Corrosion Test System, Eng. Fail. Anal., 2015, 50, p 62–70CrossRef
49.
Zurück zum Zitat K. Farrell, Cathodic Hydrogen Absorption and Severe Embrittlement in a High Strength Steel, Corrosion, 1970, 26, p 105–110CrossRef K. Farrell, Cathodic Hydrogen Absorption and Severe Embrittlement in a High Strength Steel, Corrosion, 1970, 26, p 105–110CrossRef
Metadaten
Titel
Effect of Hydrogen Charging on the Stress Corrosion Behavior of 2205 Duplex Stainless Steel Under 3.5 wt.% NaCl Thin Electrolyte Layer
verfasst von
Tianliang Zhao
Zhiyong Liu
Shanshan Hu
Cuiwei Du
Xiaogang Li
Publikationsdatum
08.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2713-8

Weitere Artikel der Ausgabe 6/2017

Journal of Materials Engineering and Performance 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.