Skip to main content
Log in

Effects of Changing Hot Rolling Direction on Microstructure, Texture and Mechanical Properties of Cu-2.7Be Sheets

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 18 May 2018

This article has been updated

Abstract

A hot rolling scheme (cross-rolling and unidirectional rolling) was adopted to process Cu-2.7Be sheets used as multiplier dynodes in photomultiplier. The effects of changing rolling direction on microstructure, texture and mechanical properties were studied by a combination of XRD, EBSD and TEM. It was found that higher copper-type texture and lower brass texture intensity were obtained in the ultimately cross-rolling (CR) sheet compared with the unidirectional rolling (UR) sheet.The EBSD results indicated that the grain orientation from mainly \(\left\langle {101} \right\rangle\) for UR sample turns to random for CR sample. Great enhancements in YS and UTS after unidirectional rolling were attributed to the massive and polygonal γ precipitates. The CR sample exhibited lower anisotropy, because of the increase of S and γ precipitates with spherical and tiny shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 18 May 2018

    Please note that an affiliation for all authors of this article was incorrectly given as “School of Materials Science and Technology, Central South University, Changsha, China”

References

  1. D.B. Zhu, C.M. Liu, T. Han et al., Effects of Secondary β and γ Phases on the Work Function Properties of Cu-Be Alloys, Appl. Phys. A, 2015, 120(3), p 1023–1026. https://doi.org/10.1007/s00339-015-9271-4

    Article  Google Scholar 

  2. D.J. Chakrabarti, D.E. Laughlin, and L.E. Tanner, The Be-Cu (Beryllium-Copper) System, Bull. Alloy Phase Diag., 1987, 8(3), p 269–282. https://doi.org/10.1007/BF02874919

    Article  Google Scholar 

  3. X. Wang, X. Liu, L. Shi et al., Characteristic and Formation Mechanism of Matt Surface of Double-Rolled Copper Foil, J. Mater. Process. Technol., 2015, 216, p 463–471. https://doi.org/10.1016/j.jmatprotec.2014.10.015

    Article  Google Scholar 

  4. M.F. Vieira and J.V. Fernandes, Plastic Behaviour of Copper Sheets Subjected to a Double Strain-Path Change, J. Mater. Process. Technol., 1995, 47(3), p 261–272. https://doi.org/10.1016/0924-0136(95)85003-1

    Article  Google Scholar 

  5. A.K. Vasudevan, M.A. Przystupa, and W.G. Fricke, Effect of Composition on Crystallographic Texture in Hot-Rolled Al-Li-Cu Alloys, Mater. Sci. Eng. A, 1996, 208(2), p 172–180. https://doi.org/10.1016/0921-5093(95)10064-4

    Article  Google Scholar 

  6. Q. Contrepois, C. Maurice, and J.H. Driver, Hot Rolling Textures of Al-Cu-Li and Al-Zn-Mg-Cu Aeronautical Alloys: Experiments and Simulations to High Strains, Mater. Sci. Eng. A, 2010, 527(27), p 7305–7312. https://doi.org/10.1016/j.msea.2010.07.095

    Article  Google Scholar 

  7. T. Chen, Z. Chen, L. Yi et al., Effects of Texture on Anisotropy of Mechanical Properties in Annealed Mg–0.6% Zr–1.0% Cd Sheets by Unidirectional and Cross Rolling, Mater. Sci. Eng. A, 2014, 615, p 324–330. https://doi.org/10.1016/j.msea.2014.07.089

    Article  Google Scholar 

  8. T. Al-Samman and G. Gottstein, Influence of Strain Path Change on the Rolling Behavior of Twin Roll Cast Magnesium Alloy, Scripta Mater., 2008, 59(7), p 760–763. https://doi.org/10.1016/j.scriptamat.2008.06.023

    Article  Google Scholar 

  9. J. Hirsch and K. Lücke, Overview No. 76: Mechanism of Deformation and Development of Rolling Textures in Polycrystalline Fcc Metals—I. Description of Rolling Texture Development in Homogeneous CuZn Alloys, Acta Metall., 1988, 36(11), p 2863–2882. https://doi.org/10.1016/0001-6160(88)90172-1

    Article  Google Scholar 

  10. Y.M. Hwang, H.H. Hsu, and H.J. Lee, Analysis of Sandwich Sheet Rolling by Stream Function Method, Int. J. Mech. Sci., 1995, 37(3), p 297–315. https://doi.org/10.1016/0020-7403(95)93522-8

    Article  Google Scholar 

  11. M.F. Vieira, J.H. Schmitt, J.J. Gracio et al., The Effect of Strain Path Change on the Mechanical Behaviour of Copper Sheets, J. Mater. Process. Technol., 1990, 24, p 313–322. https://doi.org/10.1016/0924-0136(90)90192-W

    Article  Google Scholar 

  12. O. Engler, Deformation and Texture of Copper–Manganese Alloys, Acta Mater., 2000, 48(20), p 4827–4840. https://doi.org/10.1016/S1359-6454(00)00272-X

    Article  Google Scholar 

  13. T. Leffers and R.K. Ray, The Brass-Type Texture and its Deviation from the Copper-Type Texture, Prog. Mater Sci., 2009, 54(3), p 351–396. https://doi.org/10.1016/j.pmatsci.2008.09.002

    Article  Google Scholar 

  14. H. Hu, R.S. Cline, and S.R. Goodman, Texture Transition in High-Purity Silver and its Correlation with Stacking Fault Frequency, J. Appl. Phys., 1961, 32(7), p 1392–1399. https://doi.org/10.1063/1.1736241

    Article  Google Scholar 

  15. H. Hu and R.S. Cline, Temperature Dependence of Rolling Textures in High Purity Silver, J. Appl. Phys., 1961, 32(5), p 760–763. https://doi.org/10.1063/1.1736101

    Article  Google Scholar 

  16. W.F. Hosford, Texture Strengthening, Metals Eng Quart, 1966, 6(4), p 13–19

    Google Scholar 

  17. J.G. Tang, X.M. Zhang, Y.L. Deng et al., Texture Decomposition with Particle Swarm Optimization Method, Comput. Mater. Sci., 2006, 38(2), p 395–399. https://doi.org/10.1016/j.commatsci.2005.09.015

    Article  Google Scholar 

  18. Y. Song, D. Shan, R. Chen et al., Corrosion Characterization of Mg–8Li Alloy in NaCl Solution, Corros. Sci., 2009, 51(5), p 1087–1094. https://doi.org/10.1016/j.corsci.2009.03.011

    Article  Google Scholar 

  19. W.T. Lankford, S.C. Snyder, and J.A. Bauscher, New Criteria for Predicting the Press Performance of Deep Drawing Sheets, Trans. ASM, 1950, 42, p 1197–1232

    Google Scholar 

  20. M. Masima and G. Sachs, Mechanische Eigenschaften von Messingkristallen, Zeitschrift für Physik, 1928, 50(3–4), p 161–186. https://doi.org/10.1007/BF01328862

    Article  Google Scholar 

  21. R. Gehrmann, M.M. Frommert, and G. Gottstein, Texture Effects on Plastic Deformation of Magnesium, Mater. Sci. Eng. A, 2005, 395(1), p 338–349. https://doi.org/10.1016/j.msea.2005.01.002

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the International S & T Cooperation Program of China (ISTCP). We specially appreciate the help of Professor Daoyun Ding and Bei Tang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Liu, C., Yu, H. et al. Effects of Changing Hot Rolling Direction on Microstructure, Texture and Mechanical Properties of Cu-2.7Be Sheets. J. of Materi Eng and Perform 27, 3532–3543 (2018). https://doi.org/10.1007/s11665-018-3292-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3292-z

Keywords

Navigation