Skip to main content
Log in

Tribological Properties of Typical Zeolitic Imidazolate Frameworks as Grease-Based Lubricant Additives

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, three different zeolitic imidazolate framework (ZIF) materials of ZIF-8, ZIF-71, and MAF-6 were synthesized, and their tribological properties as base grease were evaluated. We demonstrate that the tribological properties of ZIFs are correlated with the framework density/pore volume and the substituted groups. Under 200 N, MAF-6 has the lowest wear volume value and ZIF-71 exhibits the lowest friction coefficient. As the load increased, MAF-6 maintained the best and most stable tribological performances among the three ZIFs additives; however, the properties of ZIF-71 worsened. Thus, MAF-6 exhibits the lowest density and largest solvent-accessible volume (SAV) and has the lowest elastic stiffness; it easily slides and adheres onto the wear surface, forming a tribofilm that reduces friction and prevents severe wear. ZIF-71 with chlorinated groups may enhance the tribological performance; as the load rises, its dense and stiff structure has an adverse effect. These results are expected to be helpful for designing future ZIFs with excellent lubrication properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’keeffe, and O.M. Yaghi, Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks, Acc. Chem. Res., 2010, 43(1), p 58–67

    Article  Google Scholar 

  2. J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, and X.-M. Chen, Metal Azolate Frameworks: From Crystal Engineering to Functional Materials, Chem. Rev., 2011, 112(2), p 1001–1033

    Article  Google Scholar 

  3. K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, and O.M. Yaghi, Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks, Proc. Natl. Acad. Sci., 2006, 103(27), p 10186–10191

    Article  Google Scholar 

  4. J.C. Tan, T.D. Bennett, and A.K. Cheetham, Chemical Structure, Network Topology, and Porosity Effects on the Mechanical Properties of Zeolitic Imidazolate Frameworks, Proc. Natl. Acad. Sci., 2010, 107(22), p 9938–9943

    Article  Google Scholar 

  5. B. Chen, Z. Yang, Y. Zhu, and Y. Xia, Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications, J. Mater. Chem. A, 2014, 2(40), p 16811–16831

    Article  Google Scholar 

  6. B.R. Pimentel, A. Parulkar, Ek Zhou, N.A. Brunelli, and R.P. Lively, Zeolitic Imidazolate Frameworks: Next-Generation Materials for Energy-Efficient Gas Separations, Chemsuschem, 2014, 7(12), p 3202–3240

    Article  Google Scholar 

  7. J. Yao and H. Wang, Zeolitic Imidazolate Framework Composite Membranes and Thin Films: Synthesis and Applications, Chem. Soc. Rev., 2014, 43(13), p 4470–4493

    Article  Google Scholar 

  8. Y.V. Kaneti, S. Dutta, M.S. Hossain, M.J. Shiddiky, K.L. Tung, F.K. Shieh, C.K. Tsung, K.C.W. Wu, and Y. Yamauchi, Strategies for Improving the Functionality of Zeolitic Imidazolate Frameworks: Tailoring Nanoarchitectures for Functional Applications, Adv. Mater., 2017, 29(38), p 1700213

    Article  Google Scholar 

  9. J.C. Tan and A.K. Cheetham, Mechanical Properties of Hybrid Inorganic-Organic Framework Materials: Establishing Fundamental Structure-Property Relationships, Chem. Soc. Rev., 2011, 40(2), p 1059–1080

    Article  Google Scholar 

  10. J.-C. Tan, B. Civalleri, C.-C. Lin, L. Valenzano, R. Galvelis, P.-F. Chen, T.D. Bennett, C. Mellot-Draznieks, C.M. Zicovich-Wilson, and A.K. Cheetham, Exceptionally Low Shear Modulus in a Prototypical Imidazole-Based Metal–Organic Framework, Phys. Rev. Lett., 2012, 108(9), p 095502

    Article  Google Scholar 

  11. J.-C. Tan, B. Civalleri, A. Erba, and E. Albanese, Quantum Mechanical Predictions to Elucidate the Anisotropic Elastic Properties of Zeolitic Imidazolate Frameworks: ZIF-4 vs. ZIF-zni, CrystEngComm, 2015, 17(2), p 375–382

    Article  Google Scholar 

  12. M.R. Ryder and J.-C. Tan, Explaining the Mechanical Mechanisms of Zeolitic Metal–Organic Frameworks: Revealing Auxeticity and Anomalous Elasticity, Dalton Trans., 2016, 45(10), p 4154–4161

    Article  Google Scholar 

  13. B. Zheng, Y. Zhu, F. Fu, L.L. Wang, J. Wang, and H. Du, Theoretical Prediction of the Mechanical Properties of Zeolitic Imidazolate Frameworks (ZIFs), RSC Adv., 2017, 7(66), p 41499–41503

    Article  Google Scholar 

  14. J. Li and X.H. Sheng, The Effect of PA6 Content on the Mechanical and Tribological Properties of PA6 Reinforced PTFE Composites, J. Mater. Eng. Perform., 2010, 19(3), p 342–346

    Article  Google Scholar 

  15. J. Wang, F. Shi, T. Nieh, B. Zhao, M. Brongo, S. Qu, and T. Rosenmayer, Thickness Dependence of Elastic Modulus and Hardness of On-Wafer Low-k Ultrathin Polytetrafluoroethylene Films, Scr. Mater., 2000, 42(7), p 687–694

    Article  Google Scholar 

  16. Q. Shi, Z. Chen, Z. Song, J. Li, and J. Dong, Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors, Angew. Chem. Int. Ed., 2011, 50(3), p 672–675

    Article  Google Scholar 

  17. Y.-H. Wang, Q. Shi, H. Xu, and J.-X. Dong, The Synthesis And Tribological Properties of Small-and Large-Sized Crystals of Zeolitic Imidazolate Framework-71, RSC Adv., 2016, 6(22), p 18052–18059

    Article  Google Scholar 

  18. N.W. Khun, E. Mahdi, S. Ying, T. Sui, A.M. Korsunsky, and J.-C. Tan, Fine-Scale Tribological Performance of Zeolitic Imidazolate Framework (ZIF-8) Based Polymer Nanocomposite Membranes, APL Mater., 2014, 2(12), p 124101

    Article  Google Scholar 

  19. T.D. Bennett, J. Sotelo, J.-C. Tan, and S. Moggach, Mechanical Properties of Zeolitic Metal–Organic Frameworks: Mechanically Flexible Topologies and Stabilization Against Structural Collapse, CrystEngComm, 2015, 17(2), p 286–289

    Article  Google Scholar 

  20. X.C. Huang, Y.Y. Lin, J.P. Zhang, and X.M. Chen, Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc (II) Imidazolates with Unusual Zeolitic Topologies, Angew. Chem., 2006, 118(10), p 1587–1589

    Article  Google Scholar 

  21. J. Lara, P.V. Kotvis, and W.T. Tysoe, The Surface Chemistry of Chlorinated Hydrocarbonextreme-Pressure Lubricant Additives, Tribol. Lett., 1997, 3(4), p 303–309

    Article  Google Scholar 

  22. S.J. Asadauskas, G. Biresaw, and T.G. McClure, Effects of Chlorinated Paraffin and ZDDP Concentrations on Boundary Lubrication Properties of Mineral and Soybean Oils, Tribol. Lett., 2010, 37(2), p 111–121

    Article  Google Scholar 

  23. J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, and M. Wiebcke, Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework, Chem. Mater., 2009, 21(8), p 1410–1412

    Article  Google Scholar 

  24. C.-T. He, L. Jiang, Z.-M. Ye, R. Krishna, Z.-S. Zhong, P.-Q. Liao, J. Xu, G. Ouyang, J.-P. Zhang, and X.-M. Chen, Exceptional Hydrophobicity of a Large-Pore Metal–Organic Zeolite, J. Am. Chem. Soc. , 2015, 137(22), p 7217–7223

    Article  Google Scholar 

  25. X. Zhang, H. Xu, and J. Dong, Synthesis and Tribological Performance of Different Particle-Sized Nickel-Ion-Exchanged α-Zirconium Phosphates, J. Mater. Eng. Perform., 2018, 27(4), p 1927–1935

    Article  Google Scholar 

  26. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’keeffe, and O.M. Yaghi, High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture, Science, 2008, 319(5865), p 939–943

    Article  Google Scholar 

  27. A. Kumar, G.D. Thakre, P.K. Arya, and A.K. Jain, Influence of Operating Parameters on the Tribological Performance of Oleic Acid-Functionalized Cu Nanofluids, Ind. Eng. Chem. Res., 2017, 56(12), p 3527–3541

    Article  Google Scholar 

  28. S. Stupkiewicz and Z. Mróz, A Model of Third Body Abrasive Friction and Wear in Hot Metal Forming, Wear, 1999, 231(1), p 124–138

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21436008, 21503165, 21776198 and 21822808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Shi, Bin Zheng or Jinxiang Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Zhao, Y., Niu, W. et al. Tribological Properties of Typical Zeolitic Imidazolate Frameworks as Grease-Based Lubricant Additives. J. of Materi Eng and Perform 28, 1668–1677 (2019). https://doi.org/10.1007/s11665-019-03911-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03911-9

Keywords

Navigation