Skip to main content
Log in

Porous Microcapsule-Based Regenerating Superhydrophobic Coating on 304L SS and Its Corrosion Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We report fabrication of a regenerating superhydrophobic coating on 304L stainless steels, with superior corrosion resistance, using porous microcapsules made of calcium hydroxide as a core and a polymeric shell consisting of ethyl cellulose and poly methyl methacrylate. The synthesized microcapsules are characterized using optical, atomic force and scanning electron microscopic techniques, x-ray diffraction, Fourier transform infrared spectroscopy and immersion tests. The diameter of porous and permeable microcapsules ranges from 2 to 20 μm. On immersion of the coated surface in sodium stearate solution, the calcium hydroxide from the core diffuses through the pores of microcapsules and forms nanocrystalline hydrophobic calcium stearate needles pointing outward that repel water molecules. The maximum water contact angle obtained was 155.7° ± 2.05°. The micro-nanoscale roughness of the surface was evident from the AFM measurement. The cross-hatch tape adhesion test confirmed the strong adherence of the superhydrophobic coating. On damage of the superhydrophobic coating, the regeneration is achieved by immersing it in sodium stearate solution for 6 h where a 10° increase in contact angle is observed. Electrochemical studies in 0.1 M NaCl showed significant decrease in the passive current density and a delayed pitting, confirming better corrosion resistance of the coating in chloride environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Neinhuis and W. Barthlott, Characterization and Distribution of Water-Repellent, Self-cleaning Plant Surfaces, Ann. Bot., 1997, 79(6), p 667–677

    Google Scholar 

  2. R.N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28(8), p 988–994

    CAS  Google Scholar 

  3. A.B.D. Cassie and S. Baxter, Wettability of Porous Surfaces, Trans. Faraday Soc., 1944, 40, p 546–551

    CAS  Google Scholar 

  4. R. Jain and R. Pitchumani, Facile Fabrication of Durable Copper-Based Superhydrophobic Surfaces via Electrodeposition, Langmuir, 2018, 34(10), p 3159–3169

    CAS  Google Scholar 

  5. M.N. Valipour, F.C. Birjandi, and J. Sargolzaei, Super-Non-wettable Surfaces: A Review, Colloids Surf. A: Physicochem. Eng. Asp., 2014, 448, p 93–106

    Google Scholar 

  6. G. Pan, X. Xiao, and Z. Ye, Fabrication of Stable Superhydrophobic Coating on Fabric with Mechanical Durability, UV Resistance and High Oil-Water Separation Efficiency, Surf. Coat. Technol., 2019, 360, p 318–328

    CAS  Google Scholar 

  7. C.-H. Xue, X. Bai, and S.-T. Jia, Robust, Self-healing Superhydrophobic Fabrics Prepared by One-Step Coating of PDMS and Octadecylamine, Sci. Rep., 2016, 6, p 27262

    Google Scholar 

  8. K. Askar, B.M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, and B. Jiang, Self-assembled Self-cleaning Broadband Anti-reflection Coatings, Colloids Surf. A: Physicochem. Eng. Asp., 2013, 439(Complete), p 84–100

    CAS  Google Scholar 

  9. Y. Lai, Y. Tang, J. Gong, D. Gong, L. Chi, C. Lin, and Z. Chen, Transparent Superhydrophobic/Superhydrophilic TiO2-Based Coatings for Self-cleaning and Anti-fogging, J. Mater. Chem., 2012, 22(15), p 7420–7426

    CAS  Google Scholar 

  10. S.L. Dhere, Effect of Aluminium Sec-Butoxide on Wetting Properties of Silica-Based Coatings on Glass, J. Mater. Eng. Perform., 2013, 22(5), p 1453–1458

    CAS  Google Scholar 

  11. V. Kumar, A.S. Dhillon, and N.N. Sharma, Surface Modification of Textured Dielectrics and Their Wetting Behavior, J. Mater. Eng. Perform., 2017, 26(2), p 822–827

    CAS  Google Scholar 

  12. S. Vanithakumari, R. George, and U.K. Mudali, Enhancement of Corrosion Performance of Titanium by Micro–Nano Texturing, Corrosion, 2013, 69(8), p 804–812

    CAS  Google Scholar 

  13. S.C. Vanithakumari, R.P. George, and U.K. Mudali, Influence of Silanes on the Wettability of Anodized Titanium, Appl. Surf. Sci., 2014, 292, p 650–657

    CAS  Google Scholar 

  14. S.C. Vanithakumari, R.P. George, and U.K. Mudali, Environmental Stability and Long-Term Durability of Superhydrophobic Coatings on Titanium, J. Mater. Eng. Perform., 2017, 26(6), p 2640–2648

    CAS  Google Scholar 

  15. X. He, P. Cao, F. Tian, X. Bai, and C. Yuan, Autoclaving-Induced In Situ Grown Hierarchical Structures for Construction of Superhydrophobic Surfaces: A New Route to Fabricate Antifouling Coatings, Surf. Coat. Technol., 2019, 357, p 180–188

    CAS  Google Scholar 

  16. B. Yin, L. Fang, A.-Q. Tang, Q.-L. Huang, J. Hu, J.-H. Mao, G. Bai, and H. Bai, Novel Strategy in Increasing Stability and Corrosion Resistance for Super-Hydrophobic Coating on Aluminum Alloy Surfaces, Appl. Surf. Sci., 2011, 258(1), p 580–585

    CAS  Google Scholar 

  17. M.E. Vizhi, S. Vanithakumari, R. George, S. Vasantha, and U.K. Mudali, Superhydrophobic Coating on Modified 9Cr-1Mo Ferritic Steel Using Perfluoro Octyl Triethoxy Silane, Surf. Eng., 2016, 32(2), p 139–146

    CAS  Google Scholar 

  18. Z. Zhang, Q. Gu, W. Jiang, H. Zhu, K. Xu, Y. Ren, and C. Xu, Achieving of Bionic Super-Hydrophobicity by Electrodepositing Nano-Ni-Pyramids on the Picosecond Laser-Ablated Micro-Cu-Cone Surface, Surf. Coat. Technol., 2019, 363, p 170–178

    CAS  Google Scholar 

  19. T. Ishizaki, J. Hieda, N. Saito, N. Saito, and O. Takai, Corrosion Resistance and Chemical Stability of Super-Hydrophobic Film Deposited on Magnesium Alloy AZ31 by Microwave Plasma-Enhanced Chemical Vapor Deposition, Electrochim. Acta, 2010, 55(23), p 7094–7101

    CAS  Google Scholar 

  20. M. Yeganeh, M. Omidi, and M. Eskandari, Superhydrophobic Surface of AZ31 Alloy Fabricated by Chemical Treatment in the NiSO4 Solution, J. Mater. Eng. Perform., 2018, 27(8), p 3951–3960

    CAS  Google Scholar 

  21. L. Zhang, Y. Jiang, W. Zai, G. Li, S. Liu, J. Lian, and Z. Jiang, Fabrication of Superhydrophobic Calcium Phosphate Coating on Mg-Zn-Ca alloy and Its Corrosion Resistance, J. Mater. Eng. Perform., 2017, 26(12), p 6117–6129

    CAS  Google Scholar 

  22. C. Liu, H. Zhan, J. Yu, R. Liu, Q. Zhang, Y. Liu, and X. Li, Design of Superhydrophobic Pillars with Robustness, Surf. Coat. Technol., 2019, 361, p 342–348

    CAS  Google Scholar 

  23. B.N. Sahoo and B. Kandasubramanian, Recent Progress in Fabrication and Characterisation of Hierarchical Biomimetic Superhydrophobic Structures, RSC Adv., 2014, 4(42), p 22053–22093

    CAS  Google Scholar 

  24. K. Akira and N. Hitoshi, Wetting Behavior of Liquid on Geometrical Rough Surface Formed by Photolithography, Jpn. J. Appl. Phys., 1994, 33(9A), p L1283

    Google Scholar 

  25. Y. Zeng, Z. Qin, Q. Hua, Y. Min, and Q. Xu, Sheet-Like Superhydrophobic Surfaces Fabricated on Copper as a Barrier to Corrosion in a Simulated Marine System, Surf. Coat. Technol., 2019, 362, p 62–71

    CAS  Google Scholar 

  26. G. Boulousis, V. Constantoudis, G. Kokkoris, and E. Gogolides, Formation and Metrology of Dual Scale Nano-morphology on SF 6 Plasma Etched Silicon Surfaces, Nanotechnology, 2008, 19(25), p 255301

    CAS  Google Scholar 

  27. C. Liu, F. Su, J. Liang, and P. Huang, Facile Fabrication of Superhydrophobic Cerium Coating with Micro–Nano Flower-Like Structure and Excellent Corrosion Resistance, Surf. Coat. Technol., 2014, 258, p 580–586

    CAS  Google Scholar 

  28. K.-S. Liao, A. Wan, J.D. Batteas, and D.E. Bergbreiter, Superhydrophobic Surfaces Formed Using Layer-by-Layer Self-assembly with Aminated Multiwall Carbon Nanotubes, Langmuir, 2008, 24(8), p 4245–4253

    CAS  Google Scholar 

  29. Q. Liu, X. Wang, B. Yu, F. Zhou, and Q. Xue, Self-Healing Surface Hydrophobicity by Consecutive Release of Hydrophobic Molecules from Mesoporous Silica, Langmuir, 2012, 28(13), p 5845–5849

    CAS  Google Scholar 

  30. Y. Li, S. Chen, M. Wu, and J. Sun, All Spraying Processes for the Fabrication of Robust, Self-healing, Superhydrophobic Coatings, Adv. Mater., 2014, 26(20), p 3344–3348

    CAS  Google Scholar 

  31. D. Zhu, X. Lu, and Q. Lu, Electrically Conductive PEDOT Coating with Self-healing Superhydrophobicity, Langmuir, 2014, 30(16), p 4671–4677

    CAS  Google Scholar 

  32. J. Li, R. Wu, Z. Jing, L. Yan, F. Zha, and Z. Lei, One-Step Spray-Coating Process for the Fabrication of Colorful Superhydrophobic Coatings with Excellent Corrosion Resistance, Langmuir, 2015, 31(39), p 10702–10707

    CAS  Google Scholar 

  33. R. Jafari and M. Farzaneh, Development a Simple Method to Create the Superhydrophobic Composite Coatings, J. Compos. Mater., 2013, 47(25), p 3125–3129

    Google Scholar 

  34. Q. Wang, J. Li, C. Zhang, X. Qu, J. Liu, and Z. Yang, Regenerative Superhydrophobic Coating from Microcapsules, J. Mater. Chem., 2010, 20(16), p 3211–3215

    CAS  Google Scholar 

  35. ASTM D3359-09, Standard Test Methods for Measuring Adhesion by Tape Test, ASTM International, West Conshohocken, PA, 2009

  36. M. Galván-Ruiz, J. Hernández, L. Baños, J. Noriega-Montes, and M.E. Rodríguez-García, Characterization of Calcium Carbonate, Calcium Oxide, and Calcium Hydroxide as Starting Point to the Improvement of Lime for Their Use in Construction, J. Mater. Civ. Eng., 2009, 21(11), p 694–698

    Google Scholar 

  37. J. Desai, K. Alexander, and A. Riga, Characterization of Polymeric Dispersions of Dimenhydrinate in Ethyl Cellulose for Controlled Release, Int. J. Pharm., 2006, 308(1), p 115–123

    CAS  Google Scholar 

  38. D.C. Lee and L.W. Jang, Preparation and Characterization of PMMA–Clay Hybrid Composite by Emulsion Polymerization, J. Appl. Polym. Sci., 1996, 61(7), p 1117–1122

    CAS  Google Scholar 

  39. H. Wang, Y. Xue, J. Ding, L. Feng, X. Wang, and T. Lin, Durable, Self-healing Superhydrophobic and Superoleophobic Surfaces from Fluorinated-Decyl Polyhedral Oligomeric Silsesquioxane and Hydrolyzed Fluorinated Alkyl Silane, Angew. Chem. Int. Ed., 2011, 50(48), p 11433–11436

    CAS  Google Scholar 

  40. Q. Wang, B. Zhang, M. Qu, J. Zhang, and D. He, Fabrication of Superhydrophobic Surfaces on Engineering Material Surfaces with Stearic Acid, Appl. Surf. Sci., 2008, 254(7), p 2009–2012

    CAS  Google Scholar 

  41. M. Gönen, S. Öztürk, D. Balköse, S. Okur, and S. Ülkü, Preparation and Characterization of Calcium Stearate Powders and Films Prepared by Precipitation and Langmuir–Blodgett Techniques, Ind. Eng. Chem. Res., 2010, 49(4), p 1732–1736

    Google Scholar 

  42. M. Raposo, Q. Ferreira, and P. Ribeiro, A Guide for Atomic Force Microscopy Analysis of Soft-Condensed Matter, Mod. Res. Educ. Top. Microsc., 2007, 1, p 758–769

    Google Scholar 

  43. A. Bonyár, P. Lehoczki, An AFM Study Regarding the Effect of Annealing on the Microstructure of Gold Thin Films, Proceedings of the 36th International Spring Seminar on Electronics Technology, 8–12 May 2013, 2013, pp 317–322

  44. I. Stoica, A.I. Barzic, C. Hulubei, and D. Timpu, Statistical Analysis on Morphology Development of Some Semialicyclic Polyimides Using Atomic Force Microscopy, Microsc. Res. Tech., 2013, 76(5), p 503–513

    CAS  Google Scholar 

  45. L.M. Molnár, S. Nagy, and I. Mojzes, Structural Entropy in Detecting Background Patterns of AFM Images, Vacuum, 2009, 84(1), p 179–183

    Google Scholar 

  46. A. Christine, L. Jacques, B. Azeddine, and P. Joaquina, Entropy Applied to Morphological Analysis and Modelisation of Nanomaterial Optical Properties, J. Phys. III, France, 1997, 7(3), p 549–557

    Google Scholar 

  47. Q. Zheng and C. Lü, Size Effects of Surface Roughness to Superhydrophobicity, Procedia IUTAM, 2014, 10, p 462–475

    Google Scholar 

  48. L.B. Miller and J.C. Witt, Solubility of Calcium Hydroxide, The Journal of Physical Chemistry, 1928, 33(2), p 285–289

    Google Scholar 

  49. G. Bierwagen, D. Tallman, J. Li, L. He, and C. Jeffcoate, EIS Studies of Coated Metals in Accelerated Exposure, Prog. Org. Coat., 2003, 46(2), p 149–158

    Google Scholar 

  50. N. Melitas and J. Farrell, Understanding Chromate Reaction Kinetics with Corroding Iron Media Using Tafel Analysis and Electrochemical Impedance Spectroscopy, Environ. Sci. Technol., 2002, 36(24), p 5476–5482

    CAS  Google Scholar 

  51. N. Wang, D. Xiong, Y. Deng, Y. Shi, and K. Wang, Mechanically Robust Superhydrophobic Steel Surface with Anti-icing, UV-Durability, and Corrosion Resistance Properties, ACS Appl. Mater. Interfaces., 2015, 7(11), p 6260–6272

    CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, Rasitha T.P., acknowledges the fellowship provided by DAE, Govt. of India for carrying out this research work. The authors sincerely acknowledge Director, IGCAR and Director, Metallurgy and Materials Group for their constant encouragement throughout this study. The authors would also like to thank Dr. S.R. Polaki, Materials Science Group, IGCAR for his help in FESEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. George.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasitha, T.P., Vanithakumari, S.C., George, R.P. et al. Porous Microcapsule-Based Regenerating Superhydrophobic Coating on 304L SS and Its Corrosion Properties. J. of Materi Eng and Perform 28, 7047–7057 (2019). https://doi.org/10.1007/s11665-019-04425-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04425-0

Keywords

Navigation