Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2019

04.12.2019

Direct Current Plasma-Sputtered Gold Nanoparticles/Carbon Nanosheets Nanohybrid Structures for Electrochemical Sensors

verfasst von: A. Achour, M. Islam, F. Moulai, E. Haye, I. Ahmad, K. Saeed, S. Parvez, J.-F. Colomer, J. J. Pireaux

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multifunctional nanohybrid materials such as gold (Au) nanoparticles attached to the carbon nanostructures can be incorporated into devices for in vivo/in vitro detection of various analytes, catalysis and imaging purposes. In this work, vertically aligned carbon nanosheets (CNS) were grown over silicon substrate, followed by direct current plasma-sputtered deposition of Au for different times. The Au-CNS hybrid nanostructures so produced were characterized for surface and cross-sectional morphologies, phase composition and surface chemistry by means of scanning electron microscope, x-ray diffraction and x-ray photoelectron spectroscope techniques. The Au-CNS exhibit vertically aligned, dendritic wall morphology with different degrees of dispersion on the substrate. The electrochemical (EC) behavior of the different Au-CNS samples was investigated for application as electrochemical transductors. The EC activity was investigated by both cyclic voltammetry and electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3−/4−. The variations in active surface area and roughness of different electrodes were evaluated in order to explore application of such Au-NS in the EC biosensors operating via the direct electron transfer process. The EC results show remarkable properties such as high diffusion coefficient (Do), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3−/4− redox system and low surface resistivity. Such Au-CNS nanohybrid structures are promising for use in photoelectrochemical cells, sensing devices, catalysis, surface-enhanced Raman spectroscopy and biotechnology applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat A. Ángeles-Pascuala, J.R. Piñón-Hernández, M. Estevez-González, U. Pal, S. Velumani, R. Pérez, and R. Esparza, Structure, Magnetic and Cytotoxic Behaviour of Solvothermally Grown Fe3O4@Au Core-Shell Nanoparticles Detection, Mater. Charact., 2018, 142, p 237–244CrossRef A. Ángeles-Pascuala, J.R. Piñón-Hernández, M. Estevez-González, U. Pal, S. Velumani, R. Pérez, and R. Esparza, Structure, Magnetic and Cytotoxic Behaviour of Solvothermally Grown Fe3O4@Au Core-Shell Nanoparticles Detection, Mater. Charact., 2018, 142, p 237–244CrossRef
2.
Zurück zum Zitat M. Holzinger, A. Le Goff, and S. Cosnier, Nanomaterials for Biosensing Applications: A Review, Front. Chem., 2014, 2, p 63CrossRef M. Holzinger, A. Le Goff, and S. Cosnier, Nanomaterials for Biosensing Applications: A Review, Front. Chem., 2014, 2, p 63CrossRef
3.
Zurück zum Zitat R. Batool, A. Rhouati, M.H. Nawaz, A. Hayat, and J.L. Marty, A Review of the Construction of Nano-hybrids for Electrochemical Biosensing of Glucose, Biosensors, 2019, 9(1), p 46CrossRef R. Batool, A. Rhouati, M.H. Nawaz, A. Hayat, and J.L. Marty, A Review of the Construction of Nano-hybrids for Electrochemical Biosensing of Glucose, Biosensors, 2019, 9(1), p 46CrossRef
4.
Zurück zum Zitat J.E. Kim, J.H. Choi, M. Colas, D.H. Kim, and H. Lee, Gold-Based Hybrid Nanomaterials for Biosensing and Molecular Diagnostic Applications, Biosens. Bioelectron., 2016, 80, p 543–559CrossRef J.E. Kim, J.H. Choi, M. Colas, D.H. Kim, and H. Lee, Gold-Based Hybrid Nanomaterials for Biosensing and Molecular Diagnostic Applications, Biosens. Bioelectron., 2016, 80, p 543–559CrossRef
5.
Zurück zum Zitat X. Cao, Y. Ye, and S. Liu, Gold Nanoparticle-Based Signal Amplification for Biosensing, Anal. Biochem., 2011, 417, p 1–16CrossRef X. Cao, Y. Ye, and S. Liu, Gold Nanoparticle-Based Signal Amplification for Biosensing, Anal. Biochem., 2011, 417, p 1–16CrossRef
6.
Zurück zum Zitat P. Daggumati, Z. Matharu, and E. Seker, Effect of Nanoporous Gold Thin Film Morphology on Electrochemical DNA Sensing, Anal. Chem., 2015, 87, p 8149–8156CrossRef P. Daggumati, Z. Matharu, and E. Seker, Effect of Nanoporous Gold Thin Film Morphology on Electrochemical DNA Sensing, Anal. Chem., 2015, 87, p 8149–8156CrossRef
7.
Zurück zum Zitat N. Alexeyeva, J. Kozlova, V. Sammelselg, P. Ritslaid, H. Mandar, and K. Tammeveski, Electrochemical and Surface Characterisation of Gold Nanoparticle Decorated Multi-walled Carbon Nanotubes, Appl. Surf. Sci., 2010, 256, p 3040–3046CrossRef N. Alexeyeva, J. Kozlova, V. Sammelselg, P. Ritslaid, H. Mandar, and K. Tammeveski, Electrochemical and Surface Characterisation of Gold Nanoparticle Decorated Multi-walled Carbon Nanotubes, Appl. Surf. Sci., 2010, 256, p 3040–3046CrossRef
8.
Zurück zum Zitat M.E. Messing, K. Hillerich, J. Johansson, K. Deppert, and K.A. Dick, The Use of Gold for Fabrication of Nanowire Structures, Gold Bull., 2009, 42, p 172–181CrossRef M.E. Messing, K. Hillerich, J. Johansson, K. Deppert, and K.A. Dick, The Use of Gold for Fabrication of Nanowire Structures, Gold Bull., 2009, 42, p 172–181CrossRef
9.
Zurück zum Zitat Y. Lu, M. Yang, F. Qu, G. Shen, and R. Yu, Enzyme-Functionalized Gold Nanowires for the Fabrication of Biosensors, Bioelectrochemistry, 2007, 71, p 211–216CrossRef Y. Lu, M. Yang, F. Qu, G. Shen, and R. Yu, Enzyme-Functionalized Gold Nanowires for the Fabrication of Biosensors, Bioelectrochemistry, 2007, 71, p 211–216CrossRef
10.
Zurück zum Zitat D. Huang, X. Bai, and L. Zheng, Ultrafast Preparation of Three-Dimensional Dendritic Gold Nanostructures in Aqueous Solution and Their Applications in Catalysis and SERS, J. Phys. Chem. C, 2011, 115, p 14641–14647CrossRef D. Huang, X. Bai, and L. Zheng, Ultrafast Preparation of Three-Dimensional Dendritic Gold Nanostructures in Aqueous Solution and Their Applications in Catalysis and SERS, J. Phys. Chem. C, 2011, 115, p 14641–14647CrossRef
11.
Zurück zum Zitat S. Hu, W. Huang, and Z. Li, Facile Fabrication of 3D Dendritic Gold Nanostructures with an AuSn Alloy by Square Wave Potential Pulse, Mater. Lett., 2010, 64, p 1257–1260CrossRef S. Hu, W. Huang, and Z. Li, Facile Fabrication of 3D Dendritic Gold Nanostructures with an AuSn Alloy by Square Wave Potential Pulse, Mater. Lett., 2010, 64, p 1257–1260CrossRef
12.
Zurück zum Zitat Y. Ma, K. Promthaveepong, and N. Li, Shape-Controllable Gold Nanostructures and Their SERS Enhancement, Mater. Res. Express, 2016, 3, p 105009CrossRef Y. Ma, K. Promthaveepong, and N. Li, Shape-Controllable Gold Nanostructures and Their SERS Enhancement, Mater. Res. Express, 2016, 3, p 105009CrossRef
13.
Zurück zum Zitat Y. Xia, Y. Xiong, B. Lim, and S.E. Skrabalak, Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?, Angew. Chem. Int. Ed. Engl., 2009, 48, p 60–103CrossRef Y. Xia, Y. Xiong, B. Lim, and S.E. Skrabalak, Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?, Angew. Chem. Int. Ed. Engl., 2009, 48, p 60–103CrossRef
14.
Zurück zum Zitat M. Kenarkob and Z. Pourghobadi, Electrochemical Sensor for Acetaminophen Based on a Glassy Carbon Electrode Modified with ZnO/Au Nanoparticles on Functionalized Multi-walled Carbon Nano-tubes, Microchem. J., 2019, 146, p 1019–1025CrossRef M. Kenarkob and Z. Pourghobadi, Electrochemical Sensor for Acetaminophen Based on a Glassy Carbon Electrode Modified with ZnO/Au Nanoparticles on Functionalized Multi-walled Carbon Nano-tubes, Microchem. J., 2019, 146, p 1019–1025CrossRef
15.
Zurück zum Zitat L. Qiu, H. Zou, X. Wang, Y. Feng, X. Zhang, J. Zhao, X. Zhang, and Q. Li, Enhancing the Interfacial Interaction of Carbon Nanotubes Fibers by Au Nanoparticles with Improved Performance of the Electrical and Thermal Conductivity, Carbon, 2019, 141, p 497–505CrossRef L. Qiu, H. Zou, X. Wang, Y. Feng, X. Zhang, J. Zhao, X. Zhang, and Q. Li, Enhancing the Interfacial Interaction of Carbon Nanotubes Fibers by Au Nanoparticles with Improved Performance of the Electrical and Thermal Conductivity, Carbon, 2019, 141, p 497–505CrossRef
16.
Zurück zum Zitat A. Achour, S. Solaymani, S. Vizireanu, A. Baraket, A. Vesel, N. Zine, A. Errachid, G. Dinescu, and J.J. Pireaux, Effect of Nitrogen Configuration on Carbon Nanowall Surface: Towards the Improvement of Electrochemical Transduction Properties and the Stabilization of Gold Nanoparticles, Mater. Chem. Phys., 2019, 228, p 110–117CrossRef A. Achour, S. Solaymani, S. Vizireanu, A. Baraket, A. Vesel, N. Zine, A. Errachid, G. Dinescu, and J.J. Pireaux, Effect of Nitrogen Configuration on Carbon Nanowall Surface: Towards the Improvement of Electrochemical Transduction Properties and the Stabilization of Gold Nanoparticles, Mater. Chem. Phys., 2019, 228, p 110–117CrossRef
17.
Zurück zum Zitat M. Islam, A. Achour, K. Saeed, S. Javed, M. Boujtita, and M.A. Djouadi, Metal/Carbon Hybrid Nanostructures Produced from Plasma-Enhanced Chemical Vapor Deposition Over Nafion-Supported Electrochemically Deposited Cobalt Nanoparticles, Materials, 2018, 11(5), p 687CrossRef M. Islam, A. Achour, K. Saeed, S. Javed, M. Boujtita, and M.A. Djouadi, Metal/Carbon Hybrid Nanostructures Produced from Plasma-Enhanced Chemical Vapor Deposition Over Nafion-Supported Electrochemically Deposited Cobalt Nanoparticles, Materials, 2018, 11(5), p 687CrossRef
18.
Zurück zum Zitat D.J. Cott, M. Verheijen, O. Richard, I. Radu, S. De Gendt, S. van Elshocht, and P.M. Vereecken, Synthesis of Large Area Carbon Nanosheets for Energy Storage Applications, Carbon, 2013, 58, p 59–65CrossRef D.J. Cott, M. Verheijen, O. Richard, I. Radu, S. De Gendt, S. van Elshocht, and P.M. Vereecken, Synthesis of Large Area Carbon Nanosheets for Energy Storage Applications, Carbon, 2013, 58, p 59–65CrossRef
19.
Zurück zum Zitat I. Dutta, C.B. Munns, and G. Dutta, An X-ray Diffraction (XRD) Study of Vapor Deposited Gold Thin Films on Aluminum Nitride (A1N) Substrates, Thin Solid Films, 1997, 304, p 229–238CrossRef I. Dutta, C.B. Munns, and G. Dutta, An X-ray Diffraction (XRD) Study of Vapor Deposited Gold Thin Films on Aluminum Nitride (A1N) Substrates, Thin Solid Films, 1997, 304, p 229–238CrossRef
20.
Zurück zum Zitat K. Sneha, M. Sathishkumar, S. Kim, and Y.-S. Yun, Counter Ions and Temperature Incorporated Tailoring of Biogenic Gold Nanoparticles, Process Biochem., 2010, 45, p 1450–1458CrossRef K. Sneha, M. Sathishkumar, S. Kim, and Y.-S. Yun, Counter Ions and Temperature Incorporated Tailoring of Biogenic Gold Nanoparticles, Process Biochem., 2010, 45, p 1450–1458CrossRef
21.
Zurück zum Zitat A. Safdar, M. Islam, A. Akram, M. Mujahid, Y. Khalid, and S.I. Shah, Reaction Time and Film Thickness Effects on Phase Formation and Optical Properties of Solution Processed Cu2ZnSnS4 Thin Films, J. Mater. Eng. Perform., 2016, 25(2), p 457–465CrossRef A. Safdar, M. Islam, A. Akram, M. Mujahid, Y. Khalid, and S.I. Shah, Reaction Time and Film Thickness Effects on Phase Formation and Optical Properties of Solution Processed Cu2ZnSnS4 Thin Films, J. Mater. Eng. Perform., 2016, 25(2), p 457–465CrossRef
22.
Zurück zum Zitat M.P. Casaletto, A. Longo, A. Martorana, A. Prestianni, and A.M. Venezia, XPS Study of Supported Gold Catalysts: The Role of Au0 and Au+δ Species as Active Sites, Surf. Interface Anal., 2006, 38, p 215–218CrossRef M.P. Casaletto, A. Longo, A. Martorana, A. Prestianni, and A.M. Venezia, XPS Study of Supported Gold Catalysts: The Role of Au0 and Au Species as Active Sites, Surf. Interface Anal., 2006, 38, p 215–218CrossRef
23.
Zurück zum Zitat P. Rodriguez, D. Plana, D.J. Fermin, and M.T.M. Koper, New Insights into the Catalytic Activity of Gold Nanoparticles for CO Oxidation in Electrochemical Media, J. Catal., 2014, 311, p 182–189CrossRef P. Rodriguez, D. Plana, D.J. Fermin, and M.T.M. Koper, New Insights into the Catalytic Activity of Gold Nanoparticles for CO Oxidation in Electrochemical Media, J. Catal., 2014, 311, p 182–189CrossRef
24.
Zurück zum Zitat A.F.Q. Jaime, Á.B. Murcia, D.C. Amorós, and E. Morallón, Carbon Nanotubes Modified with Au for Electrochemical Detection of Prostate Specific Antigen: Effect of Au Nanoparticle Size Distribution, Front. Chem., 2019, 7, p 147CrossRef A.F.Q. Jaime, Á.B. Murcia, D.C. Amorós, and E. Morallón, Carbon Nanotubes Modified with Au for Electrochemical Detection of Prostate Specific Antigen: Effect of Au Nanoparticle Size Distribution, Front. Chem., 2019, 7, p 147CrossRef
25.
Zurück zum Zitat G. Pramanik, J. Humpolickova, J. Valenta, P. Kundu, S. Bals, P. Bour, M. Dracinsky, and P. Cigler, Gold Nanoclusters with Bright Near-Infrared Photoluminescence, Nanoscale, 2018, 10, p 3792–3798CrossRef G. Pramanik, J. Humpolickova, J. Valenta, P. Kundu, S. Bals, P. Bour, M. Dracinsky, and P. Cigler, Gold Nanoclusters with Bright Near-Infrared Photoluminescence, Nanoscale, 2018, 10, p 3792–3798CrossRef
26.
Zurück zum Zitat A.Y. Klyushin, T.C.R. Rocha, M. Havecker, A.K. Gerickea, and R. Schlogl, A Near Ambient Pressure XPS Study of Au Oxidation, Phys. Chem. Chem. Phys., 2014, 16, p 7881CrossRef A.Y. Klyushin, T.C.R. Rocha, M. Havecker, A.K. Gerickea, and R. Schlogl, A Near Ambient Pressure XPS Study of Au Oxidation, Phys. Chem. Chem. Phys., 2014, 16, p 7881CrossRef
27.
Zurück zum Zitat K. Siuzdak, M. Ficek, M. Sobaszek, J. Ryl, M. Gnyba, P. Niedziałkowski, N. Malinowska, J. Karczewski, and R. Bogdanowicz, Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route Toward High Rates of Electrochemical Biosensing, ACS Appl. Mater. Interfaces., 2017, 9, p 12982–12992CrossRef K. Siuzdak, M. Ficek, M. Sobaszek, J. Ryl, M. Gnyba, P. Niedziałkowski, N. Malinowska, J. Karczewski, and R. Bogdanowicz, Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route Toward High Rates of Electrochemical Biosensing, ACS Appl. Mater. Interfaces., 2017, 9, p 12982–12992CrossRef
28.
Zurück zum Zitat E. Luais, M. Boujtita, A. Gohier, A. Tailleur, S. Casimirius, M.A. Djouadi, A. Granier, and P.Y. Tessier, Carbon Nanowalls as Material for Electrochemical Transducers, Appl. Phys. Lett., 2009, 95, p 014104CrossRef E. Luais, M. Boujtita, A. Gohier, A. Tailleur, S. Casimirius, M.A. Djouadi, A. Granier, and P.Y. Tessier, Carbon Nanowalls as Material for Electrochemical Transducers, Appl. Phys. Lett., 2009, 95, p 014104CrossRef
29.
Zurück zum Zitat X. Hou, L. Wang, X. Wang, and Z. Li, Coating Multiwalled Carbon Nanotubes with Gold Nanoparticles Derived from Gold Salt Precursors, Diam. Relat. Mater., 2011, 20, p 1329–1332CrossRef X. Hou, L. Wang, X. Wang, and Z. Li, Coating Multiwalled Carbon Nanotubes with Gold Nanoparticles Derived from Gold Salt Precursors, Diam. Relat. Mater., 2011, 20, p 1329–1332CrossRef
30.
Zurück zum Zitat J. Lu, S. Liu, S. Ge, M. Yan, J. Yu, and X. Hu, Ultrasensitive Electrochemical Immunosensor Based on Au Nanoparticles Dotted Carbon Nanotube–Graphene Composite and Functionalized Mesoporous Materials, Biosens. Bioelectron., 2012, 33, p 29–35CrossRef J. Lu, S. Liu, S. Ge, M. Yan, J. Yu, and X. Hu, Ultrasensitive Electrochemical Immunosensor Based on Au Nanoparticles Dotted Carbon Nanotube–Graphene Composite and Functionalized Mesoporous Materials, Biosens. Bioelectron., 2012, 33, p 29–35CrossRef
31.
Zurück zum Zitat CRC Handbook of Chemistry and Physics, 79th Ed., Chemical Rubber Company Press, Boca Raton, FL (1998–99), pp. 5–94. CRC Handbook of Chemistry and Physics, 79th Ed., Chemical Rubber Company Press, Boca Raton, FL (1998–99), pp. 5–94.
32.
Zurück zum Zitat Y.J. Yang and W. Li, Self-Assembly of Gold Nanoparticles and Multiwalled Carbon Nanotubes on Graphene Oxide Nanosheets for Electrochemical Sensing Applications, Fuller Nanotub. Carbon Nanostruct., 2018, 26(12), p 837–845CrossRef Y.J. Yang and W. Li, Self-Assembly of Gold Nanoparticles and Multiwalled Carbon Nanotubes on Graphene Oxide Nanosheets for Electrochemical Sensing Applications, Fuller Nanotub. Carbon Nanostruct., 2018, 26(12), p 837–845CrossRef
Metadaten
Titel
Direct Current Plasma-Sputtered Gold Nanoparticles/Carbon Nanosheets Nanohybrid Structures for Electrochemical Sensors
verfasst von
A. Achour
M. Islam
F. Moulai
E. Haye
I. Ahmad
K. Saeed
S. Parvez
J.-F. Colomer
J. J. Pireaux
Publikationsdatum
04.12.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04492-3

Weitere Artikel der Ausgabe 12/2019

Journal of Materials Engineering and Performance 12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.