Skip to main content
Log in

Mechanical Characteristics of Al-Co-Ce Coatings Produced by the Cold Spray Process

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Gas atomized feedstock particles of an Al-13Co-26Ce alloy system were sprayed using the Cold Spray deposition technique. The microstructures of the coatings produced are examined and the mechanical characteristics, in particular the bending fatigue and the bond strength, of the Al-Co-Ce coatings are reported. The results show that the Al-Co-Ce coatings improved the fatigue behavior of AA 2024-T3 specimens when compared to uncoated and Alclad specimens. During the bond strength tests, the bonding agent failed and no delamination of the coating from the substrate occurred. The microstructural features of the feedstock powder were also found in the coatings. It is suggested that the increase in the fatigue properties of the specimens can be attributed to the residual compressive stresses induced in the coatings and to the high adhesion strength of the coatings to the substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Inoue 2000 Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys, Acta Mater., 48, p 279-306

    Article  CAS  Google Scholar 

  2. W.L. Johnson 2002 Bulk Amorphous Metal—An Emerging Engineering Material. JOM, 54(3), p 40-43

    CAS  Google Scholar 

  3. K. Urushino, K. Sugimoto 1979 Stress-Corrosion Cracking of Aged Al-Cu-Mg Alloys in NaCl Solution, Cor. Sci., 19, p 225-236

    Article  CAS  Google Scholar 

  4. F. Sanchette, A. Billard, C. Frantz 1998 Mechanically Reinforced and Corrosion-Resistant Sputtered Amorphous Aluminum Alloy Coatings, Surf. Coat. Technol., 98, p 1162-1168

    Article  CAS  Google Scholar 

  5. J.E. Sweitzer, G.J. Shiflet, J.R. Scully 2003 Localized Corrosion of Al90Fe5Gd5 and Al87Ni8.7Y4.3 Alloys in the Amorphous, Nanocrystalline and Crystalline States: Resistance to Micrometer-Scale Pit Formation, Electrochem. Acta, 48, p 1223-1234

    CAS  Google Scholar 

  6. J.G. Hoekstra, S.B. Qadri, J.R. Scully, J.M. Fitz-Gerald 2005 Laser Surface Modification of a Crystalline Al-Co-Ce Alloy for Enhanced Corrosion Resistance, Adv. Eng. Mat., 7(9), p 805-809

    Article  CAS  Google Scholar 

  7. M.E. Goldman, N. Ünlü, G.J. Shifflet, J.R. Scully 2005 Selected Corrosion Properties of a Novel Amorphous Al-Co-Ce Alloy System, Electrochem. Solid-State Lett., 8(2), p B1-B5

    Article  CAS  Google Scholar 

  8. F.J. Presuel-Moreno, M.E. Goldman, R.G. Kelly, J.R. Scully 2005 Electrochemical Sacrificial Cathodic Prevention Provided by an Al-Co-Ce Metal Coating Coupled to AA2024-T3, J. Electrochem. Soc., 8, p B302-B310

    Article  Google Scholar 

  9. H. Choi, S. Lee, B. Kim, H. Jo, C. Lee 2005 Effect of In-Flight Particle Oxidation on the Phase Evolution of HVOF NiTiZrSiSn Bulk Amorphous Coating, J. Mater. Sci., 40, p 6121-6126

    Article  CAS  Google Scholar 

  10. Y. Wu, P. Lin, G. Xie, J. Hu, M. Cao 2006 Formation of Amorphous and Nanocrystalline Phases in High Velocity Oxy-Fuel Thermally Sprayed a Fe-Cr-Si-B-Mn Alloy, Mater Sci. Eng. A, 430, p 34-39

    Article  Google Scholar 

  11. J. Jayaraj, D.J. Sordelet, D.H. Kim, Y.C. Kim, E. Fleury 2006 Corrosion Behaviour of Ni-Zr-Ti-Si-Sn Amorphous Plasma Spray Coating, Cor. Sci., 48, p 950-964

    Article  CAS  Google Scholar 

  12. P. Rohan, S.Bouaricha, J.-G. Legoux, C. Moreau, P. Citbor, S. Nourouzi, and A. Vardelle, Deposition of Amorphous Metallic Coatings by Thermal Spraying, Thermal Spray 2004: Advances in Technology and Application, May 10-12, 2004 (Osaka, Japan), ASM International, 2004, p 382-389

  13. A.P. Alkhimov, A.N. Papyrin, and V.F. Kosarev, “Gas Dynamic Spraying Method for Applying a Coating,” U.S. Patent 5,302,414, April 12, 1994

  14. R.C. Dykhuizen, M.F. Smith 1998 Gas Dynamics Principles of Cold Spray, J. Therm. Spray Technol., 7(2), p 205-212

    Article  CAS  Google Scholar 

  15. R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, S. Sampath 1999 Impact of High Velocity Cold Gas Spray Particles, J. Therm. Spray Technol., 8(4), p 559-564

    Article  CAS  Google Scholar 

  16. L. Ajdelsztajn, B. Jodoin, G.E. Kim, J.M. Schoeneug, J. Mondoux 2005 Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Met. And Mat. Trans. A, 36A, p 657-666

    Article  CAS  Google Scholar 

  17. H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye 2003 Bonding Mechanism in Cold Gas Spraying, Acta Mater., 51, p 4379-4394

    Article  CAS  Google Scholar 

  18. M. Grujicic, C.L. Zhao, W.S. DeRosset, D. Helfritch 2004 Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in Cold-Gas Dynamic-Spray Process, Mat. Des., 25, p 681-688

    CAS  Google Scholar 

  19. T.H. Van Steenkiste, J.R. Smith, R.E. Teets 2002 Aluminum Coatings Via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 154, p 237-252

    Article  Google Scholar 

  20. A.O. Tokarev 1996 Structure of Aluminum Powder Coatings Prepared by Cold Gas Dynamic Spraying, Met. Sci. Heat Treat., 38(3-4), p 136-139

    Article  Google Scholar 

  21. V. Shukla, G.S. Elliot, B.H. Kear 2000 Nanopowder Deposition by Supersonic Rectangular Jet Impingement, J. Therm. Spray Technol., 9(3), p 394-398

    Article  CAS  Google Scholar 

  22. R.S. Lima, J. Karthikeyan, C.M. Kay, J. Lindermann, C.C. Berndt 2002 Microstructural Characteristics of Cold-Sprayed Nanostructured WC-Co Coatings, Thin Solid Films, 416, p 129-135

    Article  CAS  Google Scholar 

  23. L. Ajdelsztajn, A. Zúniga, B. Jodoin, E.J. Lavernia 2006 Cold-Spray Processing of a Nanocrystalline Al-Cu-Mg-Fe-Ni Alloy with Sc, J. Therm. Spray Technol., 15(2), p 184-190

    Article  CAS  Google Scholar 

  24. L. Ajdelsztajn, B. Jodoin, P. Richer, E. Sansoucy, E.J. Lavernia 2006 Cold Gas Dynamic Spraying of Iron-Base Amorphous Alloy, J. Therm. Spray Technol., 15(4), p 495-500

    Article  CAS  Google Scholar 

  25. S. Yoon, H.J. Kim, C. Lee 2006 Deposition Behavior of Bulk Amorphous NiTiZrSiSn According to the Kinetic and Thermal Energy Levels in the Kinetic Spraying Process, Surf. Coat. Technol., 200, p 6022-6029

    Article  CAS  Google Scholar 

  26. E. Sansoucy, B. Jodoin, P. Richer, and L. Ajdelsztajn, Effect of Spraying Parameters on the Microstructure and Bond Strength of Cold Spray Aluminum Alloy Coatings, Thermal Spray 2006: Building on 100 Years of Success, ASM International, May 15-18, 2006 (Seattle, WA, USA), B.R. Marple, M.M. Hyland, Y.-C. Lau, R.S. Lima, and J. Voyer, Ed. (Materials Park, OH), ASM International, 2006, 396 p

  27. L. Zhao, K. Bobzin, D. He, J. Zwick, F. Ernst, E. Lugscheider 2006 Deposition of Aluminum Alloy Al12Si by Cold Spraying, Adv. Eng. Mater., 8(4), p 264-267

    Article  CAS  Google Scholar 

  28. J. Gresham, Aluminum Cladding Replacement, Air Force STTR Topic Release #AF06-T023, 2006

  29. Tecnar Automation DPV-2000 Reference Manual Rev. 5.0

  30. W.S. Rasband, ImageJ, U.S. National Institute of Health, Bethesda, Maryland, USA, http://www.rsb.info.nih.gov/ij, 1997-2006

  31. “Standard Test Method for Bending Fatigue Testing for Copper-Alloy Spring Materials,” B 593-96, Annual Book of ASTM Standards, Vol. 02.01, ASTM

  32. “Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings,” C 633-01, Annual Book of ASTM Standards, Vol. 02.05, ASTM

  33. A.H. Shapiro 1953 The Dynamics and Thermodynamics of Compressible Fluid Flow. Ronald Press, New York

    Google Scholar 

  34. B. Jodoin 2002 Cold Spray Nozzle Mach Number Limitation, J. Thermal Spray Technol., 11(4), p 496-507

    Article  Google Scholar 

  35. J. Mondoux, Development of a Cold-Gas Dynamic Spraying System for Parameter Study of Aluminum Coatings, M. Sc. Thesis, University of Ottawa, 2004

  36. T. Van Steenkiste, J.R. Smith 2004 Evaluation of Coatings Produced via Kinetic and Cold Spray Processes. J. Thermal Spray Technol., 13(2), p 274-282

    Article  Google Scholar 

  37. S. Sampath, X.Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, A. Vaidya 2004 Role of Thermal Spray Processing Method on the Microstructure, Residual Stress and Properties of Coatings: An Integrated Study for Ni-5 wt.% Al Bond Coats, Mater. Sci. Eng. A, 364(1-2), p 216-231

    Article  Google Scholar 

  38. I. Kraus and N. Ganev, Residual Stress and Stress Gradients, Industrial Applications of X-Ray Diffraction, F.H. Chung and D.K. Smith, Ed., Marcel Dekker Inc., New York, 2000

  39. R. Jenkins, R.L. Snyder 1996 Introduction to X-ray Powder Diffractometry. John Wiley & Sons, New York

    Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sansoucy.

Additional information

This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansoucy, E., Kim, G., Moran, A. et al. Mechanical Characteristics of Al-Co-Ce Coatings Produced by the Cold Spray Process. J Therm Spray Tech 16, 651–660 (2007). https://doi.org/10.1007/s11666-007-9099-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9099-3

Keywords

Navigation