Skip to main content
Log in

Assessment of CFD Modeling via Flow Visualization in Cold Spray Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The two-phase flow properties of copper particle laden nitrogen are computationally modeled and compared with the data obtained from the experiments, determining the achievable degree of consistency between model and reality. Two common, commercial nozzles are studied. A two-way coupled Lagrangian scheme along with the RSM turbulence model is used to track the particles and to model the interactions between the gas and the particulate phase. Significant agreement is found for the geometrical gas flow structure, the resulting particle velocities, and the dependence of the two-phase flow on the particulate phase mass loading. The particle velocities decrease with increasing mass loading, even for modest powder feed rates of <3 g/s. The velocity drop occurs even when the gas flow rate is kept constant. Adiabatic gas flow models neglecting the energy consumption by the particles are thus inaccurate, except for very dilute suspensions with low technical relevance. For the cases modeled, the experiments evidence the high predictive power of the chosen CFD approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

cross-sectional area of the particle, m2

C D :

drag coefficient

D :

particle diameter, m

F b :

body force, N

Ma :

Mach number

m :

mass, kg

R :

specific gas constant, J/kg K

Re :

Reynolds number

T :

temperature, K

t :

time, s

V :

velocity vector, m/s

ρ:

density, kg/m3

γ:

specific heat ratio

μ:

molecular viscosity, kg/m s

p:

particles

g:

gas

References

  1. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin, Cold Spray Technology, Elsevier, Amsterdam, 2006

    Google Scholar 

  2. V.K. Champagne, Ed., The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead, Cambridge, UK, 2007

    Google Scholar 

  3. M.J. Zucrow and J.D. Hoffman, Gas Dynamics. Volume 2: Multidimensional Flow, Wiley, New York, 1977

    Google Scholar 

  4. T. Stoltenhoff, Kaltgasspritzen von Kupfer, Shaker Verlag, Aachen, 2004

    Google Scholar 

  5. A. Schwenk, Entwicklung und Erprobung neuartiger Düsen für das atmosphärische Plasma-spritzen. Werkstoffe und werkstofftechnische Anwen-dungen, Vol 20. TU Chemnitz, 2005

  6. M. Grujicic, W.S. DeRosset, and D. Helfritch, Flow Analysis and Nozzle-Shape Optimization for the Cold-gas Dynamic-Spray Process, J. Eng. Manuf., 2003, 217, p 1603-1613

    Article  Google Scholar 

  7. B. Samareh and A. Dolatabadi, A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape, J. Therm. Spray Tech., 2007, 16(16), p 634-642

    Article  ADS  Google Scholar 

  8. M. Karimi, A. Fartaj, G.W. Rankin, D. Vanderzwet, J. Villafuerte, and W. Birtch, Numerical Simulation of the Cold Gas Dynamic Spray Process, J. Therm. Spray Tech., 2006, 15(4), p 518-523

    Article  CAS  ADS  Google Scholar 

  9. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, J. Therm. Spray Tech., 1999, 8(4), p 576-582

    Article  CAS  ADS  Google Scholar 

  10. T.H. Van Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, D.R. Marantz, K.A. Kowalsky, W.L. Riggs, P.H. Zajchowski, B. Pilsner, R.C. McCune, and K.J. Barnett, Kinetic Spray Coatings, Surf. Coat. Technol., 1999, 111(1), p 62-71

    Article  Google Scholar 

  11. K. Taylor, B. Jodoin, and J. Karov, J. Therm. Spray Tech., 2006, 15(2), p 273-279

    Article  CAS  ADS  Google Scholar 

  12. W. Li and C. Li, Optimization of Spray Conditions in Cold Spraying Based on Numerical Analysis of Particle Velocity, Trans. Nonferrous Metal. Soc. China, 2004, 14(Special 2), p 43-48

    MATH  Google Scholar 

  13. B. Jodoin, F. Raletz, and M. Vardelle, Cold Spray Flow Modeling and Validation, Proceedings of the 2005 International Thermal Spray Conference, 2005, Basel, Switzerland

  14. Section 8.4: Viscosity, FLUENT 6.3 Documents, ANSYS Inc

  15. B. Jodoin, Cold Spray Nozzle Mach Number Limitations, J. Therm. Spray Tech., 2002, 11(4), p 496-507

    Article  ADS  Google Scholar 

  16. S. Sarkar, G. Erlebacher, M.Y. Hussaini, and H.O. Kreiss, Analysis and Modeling of Dilatation Term in Compressible Turbulence, J. Fluid Mech., 1991, 227, p 473-493

    Article  MATH  ADS  Google Scholar 

  17. S. Sarkar and B. Lakshmanan, Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer, AIAA J., 1991, 29(5), p 743-749

    Article  ADS  Google Scholar 

  18. C.T. Crowe, Drag Coefficient on Particles in a Rocket Nozzle, AIAA J., 1967, 5(5), p 1021-1022

    Article  ADS  Google Scholar 

  19. R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops and Particles, New York, Academic Press, 1978

    Google Scholar 

  20. A. Dolatabadi, J. Mostaghimi, and L. Pershin, Modeling Dense Suspension of Solid Particles in Highly Compressible Flows, J. Comput. Fluid Dynamics, 2004, 18(2), p 125-131

    Article  MATH  Google Scholar 

Download references

Acknowledgments

U. Pyritz, F. Heinrichsdorff, and V. Türck are gratefully acknowledged for their contributions to the measurements. A. Dolatabadi would like to thank Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dolatabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samareh, B., Stier, O., Lüthen, V. et al. Assessment of CFD Modeling via Flow Visualization in Cold Spray Process. J Therm Spray Tech 18, 934–943 (2009). https://doi.org/10.1007/s11666-009-9363-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9363-9

Keywords

Navigation