Skip to main content
Log in

Desirability-Based Multi-Criteria Optimization of HVOF Spray Experiments to Manufacture Fine Structured Wear-Resistant 75Cr3C2-25(NiCr20) Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal spraying of fine feedstock powders allow the deposition of cermet coatings with significantly improved characteristics and is currently of great interest in science and industry. However, due to the high surface to volume ratio and the low specific weight, fine particles are not only difficult to spray but also show a poor flowability in the feeding process. In order to process fine powders reliably and to preserve the fine structure of the feedstock material in the final coating morphology, the use of novel thermal spray equipment as well as a thorough selection and optimization of the process parameters are fundamentally required. In this study, HVOF spray experiments have been conducted to manufacture fine structured, wear-resistant cermet coatings using fine 75Cr3C2-25(Ni20Cr) powders (−8 + 2 μm). Statistical design of experiments (DOE) has been utilized to identify the most relevant process parameters with their linear, quadratic and interaction effects using Plackett-Burman, Fractional-Factorial and Central Composite designs to model the deposition efficiency of the process and the majorly important coating properties: roughness, hardness and porosity. The concept of desirability functions and the desirability index have been applied to combine these response variables in order to find a process parameter combination that yields either optimum results for all responses, or at least the best possible compromise. Verification experiments in the so found optimum obtained very satisfying or even excellent results. The coatings featured an average microhardness of 1004 HV 0.1, a roughness Ra = 1.9 μm and a porosity of 1.7%. In addition, a high deposition efficiency of 71% could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Morimoto, Y. Sasaki, S. Fukuhara, N. Abe, and M. Tukamoto, Surface Modification of Cr3C2–NiCr Cermet Coatings by Direct Diode Laser, Vacuum, 2006, 80(11-12), p 1400-1405

    Article  CAS  Google Scholar 

  2. R. Nieminen, P. Vuoristo, K. Niemi, T. Mantyla, and G. Barbezat, Rolling Contact Fatigue Failure Mechanisms in Plasma and HVOF Sprayed WC-Co Coatings, Wear, 1997, 212(1), p 66-77

    Article  CAS  Google Scholar 

  3. K. Bobzin, F. Ernst, J. Zwick, and G. Matthäus, Analysis of In-Flight Particle Properties of Thermal Sprayed Ultrafine Powders, Mater. Sci. Eng. Technol., 2007, 38(2), p 149-154

    CAS  Google Scholar 

  4. S. Zimmermann, H. Keller, and G. Schwier, Improved Coating Properties by Optimized Carbide Powders for Modern HVOF Systems, 6th HVOF Spraying Colloquium, Nov 27-28 (Germany), GTS e.V., 2003, p 31-38

  5. Y. Qiao, T.E. Fischer, and A. Dent, The Effects of Fuel Chemistry and Feedstock Powder Structure on the Mechanical and Tribological Properties of HVOF Thermal-Sprayed WC-Co Coatings with Very Fine Structures, Surf. Coat. Technol., 2003, 172(1), p 24-41

    Article  CAS  Google Scholar 

  6. J.M. Guilemany, S. Dosta, J. Nin, and J.R. Miguel, Study of the Properties of WC-Co Nanostructured Coatings Sprayed by High-Velocity Oxyfuel, J. Therm. Spray Technol., 2005, 14(3), p 405-413

    Article  CAS  Google Scholar 

  7. K. Bobzin, F. Ernst, J. Zwick, and G. Matthaeus, Analyse von Partikeleigenschaften beim Thermischen Spritzen von Mikropulvern (Analysis of the Particle Properties in Thermal Spraying of Micronpowders), Mat.-wiss. u. Werkstofftech., 2007, 38(2), p 149-154 (in German)

    Article  CAS  Google Scholar 

  8. S. Matthews, M. Hyland, and B. James, Microhardness Variation in Relation to Carbide Development in Heat Treated Cr3C2–NiCr Thermal Spray Coatings, Acta Mater., 2003, 51(14), p 4267-4277

    Article  CAS  Google Scholar 

  9. W. Tillmann, E. Vogli, I. Baumann, G. Matthaeus, and T. Ostrowski, Influence of the HVOF Gas Composition on the Thermal Spraying of WC-Co Submicron Powders (−8 +1 μm) to Produce Superfine Structured Cermet Coatings, J. Therm. Spray Technol., 2008, 17(5-6), p 924-932

    Article  CAS  ADS  Google Scholar 

  10. D. Toma, W. Brandl, and G. Marginean, Wear and Corrosion Behaviour of Thermally Sprayed Cermet Coatings, Surf. Coat. Technol., 2001, 138, p 149-158

    Article  CAS  Google Scholar 

  11. J.A. Picas, A. Forna, A. Igartuab, and G. Mendozab, Mechanical and Tribological Properties of High Velocity Oxy-Fuel Thermal Sprayed Nanocrystalline CrC-NiCr Coatings, Surf. Coat. Technol., 2003, 174-175, p 1095-1100

    Article  CAS  Google Scholar 

  12. D.C. Crawmer, J.D. Krebsbach, and W.L. Riggs, Coating Development for HVOF Process Using Design of Experiment, Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, Materials Park, OH, 1992, p 127-136

    Google Scholar 

  13. L. Russo and M. Dorfmann, Thermal Spraying, Current Status and Future Trends, A. Ohmori, Ed., Japan High Temperature Society, Osaka, 1995, p 681-686

  14. K. Kreye, R. Schwetzke, and S. Zimmermann, High Velocity Oxy-Fuel Flame Spraying-Process and Coating Characteristics, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., ASM International, Materials Park, OH, 1996, p 451-456

    Google Scholar 

  15. J.M. Guilemany and J.A. Calero, Structural Evaluation Phenomena During High Velocity (HVOF) of the Composite Material Cr 3 C 2 -NiCr, Surface Modification Technologies XI, T.S. Sudarshan, et al., Ed., The Institute of Materials, Paris, 1997, p 81-85

  16. K. Taoa, X. Zhoua, H. Cuib, and J. Zhanga, Microhardness Variation in Heat-Treated Conventional and Nanostructured NiCrC Coatings Prepared by HVAF Spraying, Surf. Coat. Technol., 2009, 203(10-11), p 1406-1414

    Article  Google Scholar 

  17. G.C. Jia, C.J. Lib, Y.Y. Wang, and W.Y. Lib, Microstructural Characterization and Abrasive Wear Performance of HVOF Sprayed Cr3C2-NiCr Coating, Surf. Coat. Technol., 2006, 200(24), p 6749-6757

    Article  Google Scholar 

  18. V.V. Sobolev and J.M. Guilemany, Effect of Oxidation on Droplet Flattening and Splat-Substrate Interaction in Thermal Spraying, J. Therm. Spray Technol., 1999, 8(4), p 523-530

    Article  CAS  ADS  Google Scholar 

  19. N. Eigen, F. Gärtner, T. Klassen, E. Aust, R. Bormann, and H. Kreye, Microstructures and Properties of Nanostructured Thermal Sprayed Coatings Using High-Energy Milled Cermet Powders, Surf. Coat. Technol., 2005, 195, p 344-357

    Article  CAS  Google Scholar 

  20. L. Gil and M.H. Staia, Influence of HVOF Parameters on the Corrosion Resistance of NiWCrBSi Coatings, Thin Solid Films, 2002, 420-421, p 446-454

    Article  CAS  ADS  Google Scholar 

  21. G. Derringer and R. Suich, Simultaneous Optimization of Several Response Variables, J. Qual. Technol., 1980, 12, p 214-219

    Google Scholar 

  22. G. Matthaeus, M. Kostecki, and O. Dau, The Fully Automatic, Computer Controlled C-CJS (Computerised Carbide Jet System) HVOF System with 25 bar Combustion-Chamber Pressure by Thermico, 5th Colloquium on HVOF Flame Spraying, Flame Spraying, Nov 16-17 (Germany), GTS e.V., 2000, p 147-158

  23. R-Development Core Team, R: A Language and Environment for Statistical Computing. R-Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, 2008

  24. H. Chena, G. Goua, M. Tub, and Y. Liua, Characteristics of Nano Particles and Their Effect on the Formation of Nanostructures in Air Plasma Spraying WC–17Co Coating, Surf. Coat. Technol., 2009, 203(13), p 1785-1789

    Article  Google Scholar 

  25. T.P. Ryan, Modern Experimental Design, Wiley, Hoboken, NJ, 2007

    Book  MATH  Google Scholar 

  26. D.C. Montgomery, Statistical Quality Control, 6th ed., Wiley, New York, 2009

    Google Scholar 

  27. W.N. Venables and B.D. Ripley, Modern Applied Statistics with S, 4th ed., Springer, New York, 2002

    MATH  Google Scholar 

  28. H. Trautmann, D. Steuer, O. Mersmann, U. Ligges, and C. Weihs, desiRe: Desirability Functions and Indices in Multicriteria Optimization, R-Package v0.9.6., 2008, http://r-forge.r-project.org/projects/desire

  29. O.P. Solonenko, Advanced Thermophysical Fundamentals of Melt-Droplet-Substrate Interaction and its Application in Thermal Spraying, Novosibirrsk, Russia, 2003

    Google Scholar 

  30. K. Jia and T.E. Fisher, Abrasion Resistance of Nanostructured and Conventional Cemented Carbides, Wear, 1996, 1-2(200), p 206

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the DFG (German Science Foundation) within the Collaborative Research Centres SFB 475 and SFB 708, and the Transregional Collaborative Research Centre SFB TRR 30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Tillmann.

Additional information

This article is an invited paper selected from presentations at the 2009 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Expanding Thermal Spray Performance to New Markets and Applications: Proceedings of the 2009 International Thermal Spray Conference, Las Vegas, Nevada, USA, May 4-7, 2009, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tillmann, W., Vogli, E., Baumann, I. et al. Desirability-Based Multi-Criteria Optimization of HVOF Spray Experiments to Manufacture Fine Structured Wear-Resistant 75Cr3C2-25(NiCr20) Coatings. J Therm Spray Tech 19, 392–408 (2010). https://doi.org/10.1007/s11666-009-9383-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9383-5

Keywords

Navigation