Skip to main content
Log in

An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The effect of cold spray temperature and substrate hardness on particle deformation and adhesion has been studied, with particular emphasis on adiabatic shearing leading to melting. Copper particles were cold sprayed onto commercial purity (CP) aluminum and alloy 7050-T7451, with stagnation temperatures 200, 400, and 600 °C. Deposition efficiency, assisted by particle embedding, increased with temperature and was higher on the softer CP substrate. Crater surfaces, adhered particles, and interfaces were characterized by scanning electron microscopy, focused ion beam, and transmission electron microscopy. For comparison, the impact of 15 μm Cu particles was simulated using finite element modeling. A thin layer of material on the substrate-side of the interface was predicted to reach melting point on both substrates at higher impact velocities. Formation of a molten layer was found experimentally. At 600 °C, the effect of substrate heating by the gas jet could not be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Papyrin, V. Kosarev, S. Klinkov, A. Alhimov, and V. Fomin, Cold Spray Technology, Elsevier, Amsterdam, 2007

    Google Scholar 

  2. R.C. McCune, A.N. Papyrin, J.N. Hall, W.L. Riggs, and P.H. Zajchowski, An Exploration of the Cold Gas-Dynamic Spray Method for Several Materials Systems, Proceedings, 8th National Thermal Spray Conference, C.C. Berndt and S. Sampath, Eds., ASM International, Materials Park, OH, 1995, p 1-5

  3. P.C. King, S.H. Zahiri, M. Jahedi, and J. Friend, Cold Spray Electroding of Piezoelectric Ceramic, Mater. Forum, 2007, 31, p 116-119

    CAS  Google Scholar 

  4. P.C. King, S.H. Zahiri, and M.Z. Jahedi, Rare Earth/Metal Composite Formation by Cold Spray, J. Therm. Spray Technol., 2007, 17(2), p 221-227

    Article  ADS  Google Scholar 

  5. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550

    Article  CAS  ADS  Google Scholar 

  6. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Design, 2004, 25(8), p 681-688

    Article  CAS  Google Scholar 

  7. P.C. King, S.H. Zahiri, and M.H. Jahedi, Focussed Ion Beam Micro-Dissection of Cold Sprayed Particles, Acta Mater., 2008, 56(19), p 5617-5626

    Article  CAS  Google Scholar 

  8. S. Guetta, M.H. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, F. Poitiers, Y. Ichikawa, and K. Ogawa, Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats, Thermal Spray 2008: Crossing Borders, E. Lugscheider, Ed., ASM International, Materials Park, OH, 2008,

    Google Scholar 

  9. P.C. King, S.H. Zahiri, and M. Jahedi, Microstructural Refinement Within a Cold Sprayed Copper Particle, Metall. Mater. Trans. A, 2009, 40(9), p 2115-2123

    Article  Google Scholar 

  10. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  CAS  Google Scholar 

  11. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868

    Article  CAS  Google Scholar 

  12. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227

    Article  CAS  ADS  Google Scholar 

  13. R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564

    Article  CAS  ADS  Google Scholar 

  14. A.P. Alkhimov, S.V. Klinkov, and V.F. Kosarev, Temperature Near the Contact Boundary at High-Velocity Collision of a Microparticle and a Surface, Phys. Mesomech., 2000, 3, p 53-57

    Google Scholar 

  15. X.-J. Ning, J.-H. Jang, H.-J. Kim, C.-J. Li, and C. Lee, Cold Spraying of Al-Sn Binary Alloy: Coating Characteristics and Particle Bonding Features, Surf. Coat. Technol., 2008, 202, p 1681-1687

    Article  CAS  Google Scholar 

  16. C.-J. Li, W.-Y. Li, and Y.-Y. Wang, Formation of Metastable Phases in Cold-Sprayed Soft Metallic Deposit, Surf. Coat. Technol., 2005, 198(1-3), p 469-473

    Article  CAS  Google Scholar 

  17. J. Wu, H. Fang, H. Kim, and C. Lee, High Speed Impact Behaviors of Al Alloy Particle onto Mild Steel Substrate During Kinetic Deposition, Mater. Sci. Eng. A, 2006, 417(1-2), p 114-119

    Article  Google Scholar 

  18. W.-Y. Li, C. Zhang, X. Guo, C.-J. Li, H. Liao, and C. Coddet, Study on Impact Fusion at Particle Interfaces and Its Effect on Coating Microstructure in Cold Spraying, Appl. Surf. Sci., 2007, 254(2), p 517-526

    Article  CAS  ADS  Google Scholar 

  19. S. Barradas, V. Guipont, R. Molins, M. Jeandin, M. Arrigoni, M. Boustie, C. Bolis, L. Berthe, and M. Ducos, Laser Shock Flier Impact Simulation of Particle-Substrate Interactions in Cold Spray, J. Therm. Spray Technol., 2007, 16(4), p 475-479

    Article  Google Scholar 

  20. S. Guetta, M. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, Y. Ichikawa, K. Sakaguchi, and K. Ogawa, Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats, J. Therm. Spray Technol., 2009, 18(3), p 331–342

    Article  Google Scholar 

  21. A. Wank, B. Wielage, H. Podlesak, and T. Grund, High-resolution microstructural investigations of interfaces between light metal alloy substrates and cold gas-sprayed coatings, J. Therm. Spray Technol., 2006, 15(2), p 280-283

    Article  CAS  ADS  Google Scholar 

  22. A.V. Bolesta, V.M. Fomin, M.R. Sharafutdinov, and B.P. Tolochko, Investigation of Interface Boundary Occurring During Cold Gas-Dynamic Spraying of Metallic Particles, Nucl. Instrum. Meth. A, 2001, 470(1-2), p 249-252

    Article  CAS  ADS  Google Scholar 

  23. J.L. Robinson, Fluid Mechanics of Copper: Viscous Energy Dissipation in Impact Welding, J. Appl. Phys., 1977, 48(6), p 2202-2207

    Article  CAS  ADS  Google Scholar 

  24. V.K. Champagne, D. Helfritch, P. Leyman, S. Grendahl, and B. Klotz, Interface Material Mixing Formed by the Deposition of Copper on Aluminium by Means of the Cold Spray Process, J. Therm. Spray Technol., 2005, 14(3), p 330-334

    Article  CAS  ADS  Google Scholar 

  25. K. Balani, A. Agarwal, S. Seal, and J. Karthikeyan, Transmission Electron Microscopy of Cold Sprayed 1100 Aluminum Coating, Scripta Mater., 2005, 53(7), p 845-850

    Article  CAS  Google Scholar 

  26. Y. Xiong, K. Kang, G. Bae, S. Yoon, and C. Lee, Dynamic Amorphization and Recrystallization of Metals in Kinetic Spray Process, Appl. Phys. Lett., 2008, 92, p 194101

    Article  ADS  Google Scholar 

  27. K. Kim, M. Watanabe, K. Mitsuishi, K. Iakoubovskii, and S. Kuroda, Impact Bonding and Rebounding Between Kinetically Sprayed Titanium Particle and Steel Substrate Revealed by High-Resolution Electron Microscopy, J. Phys. D Appl. Phys., 2009, 42(6), p 5

    Google Scholar 

  28. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    Article  CAS  ADS  Google Scholar 

  29. W.Y. Li and C.J. Li, Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space, J. Therm. Spray Technol., 2005, 14(3), p 391-396

    Article  CAS  ADS  Google Scholar 

  30. B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Therm. Spray Technol., 2002, 11(4), p 496-507

    Article  ADS  Google Scholar 

  31. S.P. Pardhasaradhi, V. Venkatachalapathy, S.V. Joshi, and S. Govindan, Optical Diagnostics Study of Gas Particle Transport Phenomena in Cold Gas Dynamic Spraying and Comparison with Model Predictions, J. Therm. Spray Technol., 2008, 17(4), p 551-563

    Article  CAS  ADS  Google Scholar 

  32. J.D. Anderson, Modern Compressible Flow: with Historical Perspective, 3rd ed., McGraw-Hill, New York, 2003

    Google Scholar 

  33. Fluent 6.1 User’s Guide, ANSYS, Inc., Canonsburg, PA

  34. C.B. Henderson, Drag Coefficients of Spheres in Continuum and Rarefied Flows, AIAA J., 1976, 14(6), p 707-708

    Article  ADS  Google Scholar 

  35. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582

    Article  CAS  ADS  Google Scholar 

  36. L.A. Giannuzzi and F.A. Stevie, A Review of Focused Ion Beam Milling Techniques for TEM Specimen Preparation, Micron, 1999, 30(3), p 197-204

    Article  Google Scholar 

  37. J. Li, T. Malis, and S. Dionne, Recent Advances in FIB-TEM Specimen Preparation Techniques, Mater. Charact., 2006, 57(1), p 64-70

    Article  CAS  Google Scholar 

  38. ABAQUSTM 6.7-2 User Manual, Dessault Systemes Simulia Corp., Providence, RI, 2007

  39. G.R. Johnson, and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Ballistics Symposium, 1983, p 541-547

  40. Matweb, Available from: www.matweb.com

  41. K.A. Dannemann, C.E. Anderson, and G.R. Johnson, Modeling the Ballistic Impact Performance of Two Aluminum Alloys, Modelling the Performance of Engineering Structural Materials II, D.R. Leseur and T.S. Srivatsan, Ed., TMS, 2001, p 63-74

  42. W. Herrmann and J.S. Wilbeck, Review of Hypervelocity Penetration Theories: Hypervelocity Impact Proceedings of the 1986 Symposium, Int. J. Impact Eng., 1987, 5(1-4), p 307-322

    Article  Google Scholar 

  43. L.E. Murr, S.A. Quinones, E. Ferreyra, T.A. Ayala, O.L. Valerio, F. Horz, and R.P. Bernhard, The Low-Velocity-to-Hypervelocity Penetration Transition for Impact Craters in Metal Targets, Mater. Sci. Eng. A, 1998, 256(1-2), p 166-182

    Article  Google Scholar 

  44. E. Irissou, J.G. Legoux, C. Moreau, and A.N. Ryabinin, How Cold is Cold Spray? An Experimental Study of the Heat Transfer to the Substrate in Cold Gas Dynamic Spraying, Thermal Spray 2008: Crossing Borders, E. Lugscheider, Ed., ASM International, Materials Park, OH, 2008

  45. M.S. Anand, S.P. Murarka, and R.P. Agarwala, Diffusion of Copper in Nickel and Aluminum, J. Appl. Phys., 1965, 36(12), p 3860-3862

    Article  CAS  ADS  Google Scholar 

  46. N. Isono, P. Smith, D. Turnbull, and M. Aziz, Anomalous Diffusion of Fe in Liquid Al Measured by the Pulsed Laser Technique, Metall. Mater. Trans. A, 1996, 27(3), p 725-730

    Article  Google Scholar 

  47. K. Yokoyama, M. Watanabe, S. Kuroda, Y. Gotoh, T. Schmidt, and F. Gartner, Simulation of Solid Particle Impact Behavior for Spray Processes, Mater. Trans., 2006, 47(7), p 1697-1702

    Article  CAS  Google Scholar 

  48. J. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16(5), p 619-626

    Article  CAS  ADS  Google Scholar 

  49. M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, M. Sugimoto, and M. Izawa, Effect of Substrate Temperature on Deposition Behavior of Copper Particles on Substrate Surfaces in the Cold Spray Process, J. Therm. Spray Technol., 2007, 16(5), p 643-650

    Article  CAS  ADS  Google Scholar 

  50. K. Kang, S. Yoon, Y. Ji, and C. Lee, Oxidation Dependency of Critical Velocity for Aluminum Feedstock Deposition in Kinetic Spraying Process, Mater. Sci. Eng. A, 2008, 486(1-2), p 300-307

    Article  Google Scholar 

  51. G.R. Cowan and A.H. Holtzman, Flow Configurations in Colliding Plates: Explosive Bonding, J. Appl. Phys., 1963, 34(4), p 928-939

    Article  ADS  Google Scholar 

  52. B. Crossland and J.D. Williams, Explosive Welding, Met. Mater., 1970, 4, p 79-100

    Google Scholar 

  53. J. Vlcek, L. Gimeno, H. Huber, and E. Lugscheider, A Systematic Approach to Material Eligibility for the Cold-Spray Process, J. Therm. Spray Technol., 2005, 14(1), p 125-133

    Article  ADS  Google Scholar 

  54. D. Zhang, P.H. Shipway, and D.G. McCartney, Cold Gas Dynamic Spraying of Aluminium: The Role of Substrate Characteristics in Deposit Formation, J. Therm. Spray Technol., 2005, 14(1), p 109-116

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Korean Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (No. 2006-02289). The authors would like to thank Jens Oqueka, from Helmut Schmidt University, University of the Federal Armed Forces, Hamburg, Germany, for his assistance in implementing some of the particle acceleration model into code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, P.C., Bae, G., Zahiri, S.H. et al. An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates. J Therm Spray Tech 19, 620–634 (2010). https://doi.org/10.1007/s11666-009-9454-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9454-7

Keywords

Navigation