Skip to main content
Log in

Effects of HVOF Process Parameters on the Properties of Ni-Cr Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This research examined the influence of processing parameters on the structure of a Ni-50Cr coating applied by high-velocity oxy-fuel spraying onto stainless steel specimens. This type of coating is normally used as protection against heat and corrosion encountered in power plant and marine boilers, and oil refinery heaters. A statistical design of experiments identified fuel and oxygen flow rates and spraying distance as the most influential parameters controlling the in-flight characteristics of the powder particles prior to impact. The effects of these parameters on the porosity level, oxide content, and microhardness of the coatings were then investigated in more detail. These results indicated that the oxide content and hardness of the coatings were dependent on the gas combustion ratio but not on spraying distance. The porosity level and amount of unmelted particles were reduced at the longest spraying distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.A. Shifler and L.K. Kohler, Hot Corrosion Resistance and Thermal Stability of High Chromium-Nickel Alloys, Presented at and Published in Proceedings of the NACE International Annual Conference CORROSION/2000, Paper no. 242, NACE, Houston, Texas, 2000

  2. “Standard Specification for Casting, Chromium-Nickel Alloys, A560,” Annual Book of ASTM Standards, ASTM, 2000

  3. J.R. Davis, Ed., Heat-Resistant Materials: ASM Specialty Handbook, ASM, Materials Park, OH, 1997, p 383-384

    Google Scholar 

  4. H.L. Holland, Practical Experience with Countering Metal Dusting in a Methane Reforming Unit, Presented at and Published in Proceedings of the NACE International Annual Conference CORROSION/2001, Paper No. 1385, NACE, Houston, TX, 2001

  5. T. Sundararajan, S. Kuroda, and F. Abe, Effect of Thermal Spray on the Microstructure and Adhesive Strength of High-Velocity Oxy-Fuel-Sprayed Ni-Cr Coatings on 9Cr-1Mo Steel, Metall. Mater. Trans. A, 2004, 35(10), p 3187-3199

    Article  Google Scholar 

  6. T.S. Sidhu, S. Prakash, and R.D. Agrawal, Studies on the Properties of High-Velocity Oxy-Fuel Thermal Spray Coatings for Higher Temperature Applications, Mater. Sci., 2005, 41(6), p 805-823

    Article  CAS  Google Scholar 

  7. E. Turunen, “Diagnostic Tools for HVOF Process Optimization,” Ph.D. Thesis, Helsinki University of Technology, 2005

  8. D. Cheng, Q. Xu, E.J. Lavernia, and G. Trapaga, The Effect of Particle Size and Morphology on the In-Flight Behavior of Particles During High-Velocity Oxy-Fuel Thermal Spraying, Metall. Mater. Trans., 2001, B32(3), p 525-535

    Google Scholar 

  9. M.A. Uusitalo, P.M.J. Vuoristo, and T.A. Mäntylä, High Temperature Corrosion of Coatings and Boiler Steels in Reducing Chlorine-Containing Atmosphere, Surf. Coat. Technol., 2002, 161(2-3), p 275-285

    Article  CAS  Google Scholar 

  10. T. Keller, W. Wagner, J. Ilavsky, J. Pisacka, G. Barbezat, and P. Fiala, Microstructure-Property Relationships and Cross-Property-Correlations of Thermal Sprayed Ni-Alloy Coatings, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28-30, 2001 (Singapore), ASM International, 2001, p 643-652

  11. J.R. Davis, Ed., Handbook of Thermal Spray Technology, Thermal Spray Society, ASM International, OH, 2004, p 338

    Google Scholar 

  12. F. Azarmi, T.W. Coyle, and J. Mostaghimi, Optimization of Atmospheric Plasma Spray Process Parameters using a Design of Experiment for Alloy 625 coatings, J. Therm. Spray Tech., 2008, 17(1), p 144-155

    Article  CAS  ADS  Google Scholar 

  13. P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Tech., 2001, 10(1), p 44-66

    Article  CAS  ADS  Google Scholar 

  14. H. Zhang, X.Y. Wang, L.L. Zheng, and X.Y. Jiang, Studies of Splat Morphology and Rapid Solidification During Thermal Spraying, Int. J. Heat Mass Trans., 2001, 44(24), p 4579-4592

    Article  MATH  CAS  Google Scholar 

  15. J. Saaedi, T.W. Coyle, S. Mirdamadi, H. Arabi, and J. Mostaghimi, Phase Formation in a Ni-50Cr HVOF Coating, Surf. Coat. Technol., 2008, 202(24), p 5804-5811

    Article  CAS  Google Scholar 

  16. R.K. Roy, Chapter 6, A Primer on the Taguchi Method, Society of Manufacturing Engineers (Dearborn, MI), 1990, p 100-125

  17. V. Higuera, F.J. Belzunce, A. Carriles, and S. Poveda, Influence of the Thermal-Spray Procedure on the Properties of a Nickel-Chromium Coating, J. Mater. Sci., 2002, 37(3), p 649-654

    Article  CAS  Google Scholar 

  18. E. Lugscheider, C. Herbst, and L. Zhao, Parameter studies on high-velocity oxy-fuel spraying of MCrAlY coatings, Surf. Coat. Technol., 1998, 108-109(1-3), p 16-23

    Article  CAS  Google Scholar 

  19. A.D. Hewitt, Technology of Oxy-Fuel Gas Processes; Part 2: Comparative Combustion Properties of Fuel Gases, Weld. Met. Fab., 1972, 40, p 382-390

    Google Scholar 

  20. H.H. Tawfik and F. Zimmerman, Mathematical Modeling of the Gas and Powder Flow in HVOF Systems, J. Therm. Spray Technol., 1997, 6(3), p 345-352

    Article  CAS  ADS  Google Scholar 

  21. M. Li and P.D. Christofides, Multi-Scale Modeling and Analysis of an Industrial HVOF Thermal Spray Process, Chem. Eng. Sci., 2005, 60, p 3649-3669

    Article  CAS  Google Scholar 

  22. C.M. Hackett and G.S. Settles, Turbulent Mixing of the HVOF Thermal Spray and Coating Oxidation, Thermal Spray Industrial Applications, C.C. Bernt and S. Sampath, Ed., ASM Intentional, Boston, OH, USA, 1994, p 307-312

    Google Scholar 

  23. R.A. Neiser, M.F. Smith, and R.C. Dykhuizen, Oxidation in Wire HVOF-Sprayed Steel, J. Therm. Spray Technol., 1998, 7(4), p 537-545

    Article  CAS  ADS  Google Scholar 

  24. K. Dobler, H. Kreye, and R. Schwetzke, Oxidation of Stainless Steel in the High Velocity Oxy-Fuel Process, J. Therm. Spray Technol., 2000, 9(3), p 407-413

    Article  CAS  ADS  Google Scholar 

  25. K. Korpiola, “High Temperature Oxidation of Metal, Alloy and Cermet Powders in HVOF Spraying Process,” Ph.D. Thesis, Helsinki University of Technology, 2004, p 81

  26. J. He, M. Ice, and E. Lavernia, Particle Melting Behavior During High-Velocity Oxygen Fuel Thermal Spraying, J. Therm. Spray Technol., 2001, 10(1), p 83-93

    Article  CAS  ADS  Google Scholar 

  27. J.F. Li, H.L. Liao, C.X. Ding, and C. Coddet, Optimizing the Plasma Spray Process Parameters of Yttria Stabilized Zirconia Coatings Using a Uniform Design of Experiments, J. Mater. Process. Technol., 2005, 160(1), p 34-42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are expressed to Dr. Larry Pershin and Tiegang Li for help with deposition of the coatings. Partial support for J. Saaedi during the course of this work was provided by the Centre for Advanced Coating Technologies (Prof. Javad Mostaghimi, Director).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Saaedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saaedi, J., Coyle, T.W., Arabi, H. et al. Effects of HVOF Process Parameters on the Properties of Ni-Cr Coatings. J Therm Spray Tech 19, 521–530 (2010). https://doi.org/10.1007/s11666-009-9464-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9464-5

Keywords

Navigation