Skip to main content
Log in

Prediction of Critical Velocity During Cold Spraying Based on a Coupled Thermomechanical Eulerian Model

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In cold spraying (CS), critical velocity of particles is one of the most important parameters. The impacting particle and substrate inevitably undergo a strong thermomechanical coupling process at the contacting interface and serious plastic deformation in a very short time. In this paper, a coupled thermomechanical Eulerian (CTM-Eulerian) model was, for the first time, developed for CS particles to investigate plastic deformation and heat conduction within the bulk, and to predict the critical velocity. Results show that heat conduction has a significant effect on the temperature distribution within the particle which will influence the atom diffusion at the impacting interface, while a little influence on plastic deformation. Moreover, based on the deformed particle shapes and plastic strain analysis, a calculated critical velocity of about 300 m/s for copper is obtained. Finally, this CTM-Eulerian model is extended to other commonly sprayed materials and the predicted critical velocities of Fe, Ni, SS304, Al, In718, and TC4 are about 350, 380, 395, 410, 490, and 500 m/s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 15(51), p 4379-4394

    Article  Google Scholar 

  2. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 3(54), p 729-742

    Article  Google Scholar 

  3. J.H. Lee, S.M. Shin, H.J. Kim, and C.H. Lee, Effect of Gas Temperature on Critical Velocity and Deposition Characteristics in Kinetic Spraying, Appl. Surf. Sci., 2007, 253(7), p 3512-3520

    Article  Google Scholar 

  4. X.J. Ning, J.H. Jang, and H.J. Kim, The Effects of Powder Properties on In-Flight Particle Velocity and Deposition Process during Low Pressure Cold Spray Process, Appl. Surf. Sci., 2007, 253(18), p 7449-7455

    Article  Google Scholar 

  5. H.J. Kim, C.H. Lee, and S.Y. Hwang, Superhard Nano WC-12%Co Coating by Cold Spray Deposition, Mater. Sci. Eng. A, 2005, 391(1-2), p 243-248

    Article  Google Scholar 

  6. C.J. Li, W.Y. Li, and H.L. Liao, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J. Therm. Spray Technol., 2006, 2(15), p 212-222

    Article  Google Scholar 

  7. K. Kang, S.H. Yoon, Y.W. Ji, and C.H. Lee, Oxidation Dependency of Critical Velocity for Aluminum Feedstock Deposition in Kinetic Spraying Process, Mater. Sci. Eng. A, 2008, 486(1-2), p 300-307

    Article  Google Scholar 

  8. W.Y. Li, H.L. Liao, C.J. Li, G. Li, C. Coddet, and X.F. Wang, On High Velocity Impact of Micro-Sized Metallic Particles in Cold Spraying, Appl. Surf. Sci., 2006, 5(253), p 2852-2862

    Article  Google Scholar 

  9. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 8(25), p 681-688

    Article  Google Scholar 

  10. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 17(56), p 4858-4868

    Article  Google Scholar 

  11. W.Y. Li, H.L. Liao, C.J. Li, H.S. Bang, and C. Coddet, Numerical Simulation of Deformation Behavior of Al Particles Impacting on Al Substrate and Effect of Surface Oxide Films on Interfacial Bonding in Cold Spraying, Appl. Surf. Sci., 2007, 11(253), p 5084-5509

    Article  Google Scholar 

  12. W.Y. Li and W. Gao, Some Aspects on 3D Numerical Modeling of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, Appl. Surf. Sci., 2009, 18(255), p 7878-7892

    Article  Google Scholar 

  13. W.Y. Li, S. Yin, and X.F. Wang, Numerical Investigations of the Effect of Oblique Impact on Particle Deformation in Cold Spraying by the SPH Method, Appl. Surf. Sci., 2010, 12(256), p 3725-3734

    Article  Google Scholar 

  14. R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564

    Article  Google Scholar 

  15. S. Yin, X.F. Wang, B.P. Xu, and W.Y. Li, Examination on the Calculation Method for Modeling the Multi-Particle Impact Process in Cold Spraying, J. Therm. Spray Technol., 2010, 5(19), p 1032-1041

    Article  Google Scholar 

  16. M. Yu, W.Y. Li, F.F. Wang, and H.L. Liao, Finite Element Simulation of Impacting Behavior of Particles in Cold Spraying by Eulerian Approach, J. Therm. Spray Technol., 2012, 21(3-4), p 745-752

    Article  Google Scholar 

  17. S.R. Beissel, C.A. Gerlach, and G.R. Johnson, Hypervelocity Impact Computation with Finite Elements and Meshfree Particles, Int. J. Impact. Eng., 2006, 33(1-12), p 89-90

    Article  Google Scholar 

  18. A.R. Khoei, A.R. Azami, M. Anahid, and R.W. Lewis, A Three-Invariant Hardening Plasticity for Numerical Simulation of Powder Forming Processes Via the Arbitrary Lagrangian-Eulerian FE Model, Int. J. Numer. Methods Eng., 2006, 5(66), p 843-877

    Article  Google Scholar 

  19. Abaqus Analysis User’s Manual, ABAQUS 6.12 HTML Documentation, Dassault Systèmes, 2012

  20. K. Yokoyama, M. Watanabe, S. Kuroda, Y. Gotoh, T. Schmidt, and F. Gartner, Simulation of Solid Particle Impact Behavior for Spray Processes, Mater. Trans., 2006, 47(7), p 1697-1702

    Article  Google Scholar 

  21. T.S. Price, P.H. Shipway, D.G. McCartney, E. Calla, and D. Zhang, A Method for Characterizing the Degree of Inter-particle Bond Formation in Cold Sprayed Coatings, J. Therm. Spray Technol., 2007, 16(4), p 566-570

    Article  Google Scholar 

  22. H.T. Wang, C.J. Li, G.J. Yang, and C.X. Li, Cold Spraying of Fe/Al Powder Mixture: Coating Characteristics and Influence of Heat Treatment on the Phase Structure, Appl. Surf. Sci., 2008, 255(5), p 2538-2544

    Article  Google Scholar 

  23. H.Y. Lee, S.H. Jung, S.Y. Lee, and K.H. Ko, Alloying of Cold-Sprayed Al-Ni Composite Coatings by Post-Annealing, Appl. Surf. Sci., 2007, 253(7), p 3496-3502

    Article  Google Scholar 

  24. M.R. Sørensen, Y. Mishin, and A.F. Voter, Diffusion Mechanisms in Cu Grain Boundaries, Phys. Rev. B, 2000, 62(6), p 3658-3673

    Article  Google Scholar 

  25. J. Vlcek, L. Gimeno, H. Huber, and E. Lugscheider, A Systematic Approach to Material Eligibility for the Cold Spray Process, J. Therm. Spray Technol., 2005, 14(1), p 125-133

    Article  Google Scholar 

  26. S.H. Zahiri, D. Fraser, S. Gulizia, and M. Jahedi, Effect of Processing Conditions on Porosity Formation in Cold Gas Dynamic Spraying of Copper, J. Therm. Spray Technol., 2005, 3(15), p 422-430

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank for financial support from the Graduate Starting Seed Fund of Northwestern Polytechnical University (2013019), the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (131052), and the 111 Project (B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F.F., Li, W.Y., Yu, M. et al. Prediction of Critical Velocity During Cold Spraying Based on a Coupled Thermomechanical Eulerian Model. J Therm Spray Tech 23, 60–67 (2014). https://doi.org/10.1007/s11666-013-0009-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-0009-6

Keywords

Navigation