Skip to main content
Log in

A Comparison of Mechanical and Tribological Behavior of Nanostructured and Conventional WC-12Co Detonation-Sprayed Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In the present study, WC-12Co coatings were deposited by detonation-spraying technique using conventional and nanostructured WC-12Co feedstock at four different oxy/fuel ratios (OF ratio). The coatings exhibited the presence of phases like W2C and W due to the decarburization of the WC phase, and the proportions of these phases were higher in the nano WC-12Co coatings compared with conventional WC-12Co coatings. Coating hardness and fracture toughness were measured. The tribological performance of coatings was examined under dry sand rubber wheel abrasion wear, and solid particle erosion wear conditions. The mechanical and wear properties of coatings were influenced by degree of decarburization and more so in the case of nanostructured WC-Co coatings. The results indicate that the extent of decarburization has a substantial influence on the elastic modulus of the coating which in turn is related to the extent of intersplat cracking of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V. Ramnath and N. Jayaraman, Characterization and Wear Performance of Plasma Sprayed WC-Co Coatings, Mat. Sci. Tech., 1989, 5, p 382-389

    Article  CAS  Google Scholar 

  2. M.E. Vinayo, F. Kassabji, J. Guyonnet, and P. Fauchais, Plasma Sprayed WC-Co Coatings: Influence of Spray Conditions (Atmospheric and Low Pressure Plasma Spraying) on the Crystal Structure, Porosity, and Hardness, J. Vac. Sci. Technol. A, 1985, 3, p 2483-2489

    Article  CAS  Google Scholar 

  3. D. Tu, S. Chang, C. Chao, and C. Lin, Tungsten Carbide Phase Transformation during the Plasma Spray Process, J. Vac. Sci. Technol. A, 1985, 3, p 2479-2482

    Article  CAS  Google Scholar 

  4. Y.C. Zhu, K. Yukimura, C. Ding, and P. Zhang, Tribological Properties of Nanostrucutred and Conventional WC-Co Coatings Deposited by Plasma Spraying, Thin Solid Films, 2001, 388, p 277-282

    Article  CAS  Google Scholar 

  5. P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, Effects of Carbide Size and Co Content on the Microstructure and Mechanical Properties of HVOF-sprayed WC-Co Coatings, Surf. Coat. Technol., 2007, 202, p 509-521

    Article  CAS  Google Scholar 

  6. Y. Qiao, T.E. Fischer, and A. Dent, The Effects of Fuel Chemistry and Feedstock Powder Structure on the Mechanical and Tribological Properties of HVOF Thermal Sprayed WC-Co Coatings with Very Fine Structures, Surf. Coat. Technol., 2003, 172, p 24-41

    Article  CAS  Google Scholar 

  7. D.A. Stewart, P.H. Shipway, and D.G. McCartney, Abrasive Wear Behaviour of Conventional and Nanocomposite HVOF-sprayed WC-Co Coatings, Wear, 1999, 225-229, p 789-798

    Article  CAS  Google Scholar 

  8. P. Suresh Babu, B. Basu, and G. Sundararajan, Processing-Structure-Property Correlation and Decarburization Phenomenon in Detonation Sprayed WC-12Co Coatings, Acta Mater., 2008, 56, p 5012-5026

    Article  CAS  Google Scholar 

  9. H.L.de Villiers Lovelock, Powder/Processing/Structure Relationships in WC-Co Thermal Spray Coatings: A Review of the Published Literature, J. Therm. Spray Technol., 1998, 7, p 357-373.

  10. K. Jia, T.E. Fischer, and B. Gallois, Microstructure, Hardness and Toughness of Nanostructured and Conventional WC-Co Composites, Nanostruct. Mater., 1998, 10, p 875-891

    Article  CAS  Google Scholar 

  11. K. Jia, and T.E. Fischer, Abrasion Wear Resistance of Nanostructured and Conventional Cemented Carbides, Wear, 1996, 200, p 206-214

  12. K. Jia, and T.E. Fischer, Sliding Wear of Conventional and Nanostructured Cemented Carbides, Wear, 1997, 203-204, p 310-318

  13. J. He and J.M. Schoenung, A Review on Nanostructured WC-Co Coatings, Surf. Coat. Technol., 2002, 157, p 72-79

    Article  CAS  Google Scholar 

  14. H. Chen, G. Gou, M. Tu, and Y. Liu, Characteristics of Nano Particles and Their Effect on the Formation of Nanostructures in air Plasma Spraying WC-17Co Coating, Surf. Coat. Technol., 2009, 203, p 1785-1789

    Article  CAS  Google Scholar 

  15. C. Verdon, A. Karimi, and J.L. Martin, A Study of High Velocity Oxy-fuel Thermally Sprayed Tungsten Carbide Based Coatings. Part 1: Microstructures, Mat. Sci. Eng., 1998, A246, p 11-24.

  16. D.A. Stewart, P.H. Shipway, and D.G. McCartney, Microstructural Evaluation in Thermally Sprayed WC-Co Coatings: Comparison between Nanocomposite and Conventional Starting Powders, Acta Mater., 2000, 48, p 1593-1604

    Article  CAS  Google Scholar 

  17. C.J. Li, A. Ohmori, and Y. Harada, Formation of an Amorphous Phase in Thermal Sprayed WC-Co, J. Therm. Spray Technol., 1996, 5, p 69-73

    Article  CAS  Google Scholar 

  18. Q. Yang, T. Senda, and A. Ohmori, Effect of Carbide Grain Size on Microstructure and Sliding Wear Behaviour of HVOF-sprayed WC-12%Co Coatings, Wear, 2003, 254, p 23-34

    Article  CAS  Google Scholar 

  19. S. Usmani, S. Sampath, D.L. Houck, and D. Lee, Effect of Carbide Grain Size on the Sliding and Abrasive Wear Behaviour of Thermal Sprayed WC-Co Coatings, Trib. Trans., 1997, 40, p 470-478.

    Google Scholar 

  20. C.-J. Li, A. Ohmori, and K. Tani, Effect of WC Particle Size on the Abrasive Wear of Thermally Sprayed WC-Co Coatings, Mater. Manuf. Process., 1999, 14(2), p 175-184

    Article  CAS  Google Scholar 

  21. Z.X. Ding, Q. Wang, and Z.L. Liu, Performance Study of Erosion Wear of Nano Structured WC-12Co Coatings Sprayed by HVOF, Key Eng. Mater., 2008, 373-374, p 27-30

    Article  CAS  Google Scholar 

  22. J.M. Guilemany, S. Dosta, J. Nin, and J.R. Miguel, Study of the Properties of WC-Co Nanostructured Coatings Sprayed by High-Velocity Oxyfuel, J. Therm. Spray Technol., 2005, 14, p 405-413

    Article  CAS  Google Scholar 

  23. A.H. Dent, S. DePalo, and S. Sampath, Examination of the Wear Properties of HVOF Sprayed Nanostructured and Conventional WC-Co Cermets with Different Binder Phase Contents, J. Therm. Spray Technol., 2002, 11, p 551-558

    Article  CAS  Google Scholar 

  24. P.H. Shipway, D.G. McCartney, and T. Sudaprasert, Sliding Wear Behaviour of Conventional and Nanostructured HVOF Sprayed WC-Co Coatings, Wear, 2005, 259, p 820-827

    Article  CAS  Google Scholar 

  25. X.Q. Zhao, H.D. Zhou, and J.M. Chen, Comparative Study of the Friction and Wear Behaviour of Plasma Sprayed Conventionl and Nanostructured WC-12%Co Coatings on Stainless Steel, Mat. Sci. Eng., 2006, 431, p 29-297

    Google Scholar 

  26. G. Di Girolamo, F. Marra, G. Pulci, J. Tirillo, T. Valente, and L. Pilloni, Microstructure and Wear Behavior of Plasma-Sprayed Nanostructured WC-Co Coatings, Int. J. Appl. Ceram. Technol., 2013, 10, p 60-71

    Google Scholar 

  27. C. Bartuli, T. Valente, F. Cipri, E. Bemporad, and M. Tului, Parametric study of a HVOF process for the deposition of nanostructured WC-Co coatings, J. Therm. Spray Technol., 2005, 14, p 187-195

    Article  CAS  Google Scholar 

  28. G. James, Berryman, Elastic and Transport Properties in Polycrystals of Cracked Grains: Cross-property Relations and Microstructure, Int. J. Eng. Sci., 2008, 46, p 500-512

    Article  Google Scholar 

  29. L. Shen and J. Li, A Numerical Simulation for Effective Elastic Moduli of Plates with Various Distributions and Sizes of Cracks, Int. J. Solids Struct., 2004, 41, p 7471-7492

    Article  Google Scholar 

  30. D.K. Shetty, I.G. Wright, P.N. Mincer, and A.H. Clauer, Indentation Fracture of WC-Co Cermets, J. Mat. Sci., 1985, 20, p 1873-1882

    Article  CAS  Google Scholar 

  31. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation, J. Mater. Res., 1992, 7(6), p 1564-1583

    Article  CAS  Google Scholar 

  32. ASTM G65-04, Standard test method for measuring abrasion using the dry sand rubber wheel apparatus

  33. ASTM G76-07, Standard test method for conducting erosion tests by solid particle impingement using gas jets

  34. F.H. Chung, Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures-II: Adiabatic Principle of X-ray Diffraction Analysis of Mixtures, J. Appl. Cryst., 1974, 7, p 526

    Article  Google Scholar 

  35. S. Dosta, and J.M. Guilemany, Personal communiction, 2007.

  36. Metals Hand Book, Properties and Selection: Non-Ferrous Alloys and Special Purpose Materials, 10th ed, ASM International, 1990, p 2,

  37. ASM Engineered Material Reference Book, 2nd ed., M. Bauccio, Ed., ASM International, Materials Park, OH, 1994

  38. E. Kadyrov, Gas-Particle Interaction in Detonation Spraying Systems, J. Therm. Spray Technol., 1996, 5, p 185-195

    Article  CAS  Google Scholar 

  39. E.C. David, and R.W. Zimmerman, Elastic Moduli of Solids Containing Spheroidal Pores, Int. J. Eng. Sci., 2011, 49, p 544-560

    Google Scholar 

  40. M. Landa, F. Kroupa, K. Neufuss, and P. Urbanek, Effect of Uniaxial Progress on Ultrasound Velocities and Elastic Moduli in Plasma-sprayed Ceramics, J. Therm. Spray Technol., 2003, 12, p 226-233

    Article  CAS  Google Scholar 

  41. G. Sundararajan, M. Roy, and B. Venkataraman, Erosion Efficiency—a New Parameter to Characterize the Dominant Erosion Mechanism, Wear, 1990, 140, p 369-381

    Article  CAS  Google Scholar 

  42. A.J. Allen, J. Ilavsky, G.G. Long, J.S. Wallace, C.C. Berndt, and H. Herman, Microstructural Characterization of Yttria Stabilized Zirconia Plasma-sprayed Deposits using Multiple Small Angle Neutron Scattering, Acta Mater., 2001, 49, p 1661-1675

    Article  CAS  Google Scholar 

  43. A. Kulkarni, Z. Wang, T. Nakamura, S. Sampath, A. Goland, H. Herman, J. Allen, J. Ilavsky, G. Long, J. Frahm, and R.W. Steinbrech, Comprehensive Microstructural Characterization and Predictive Property Modeling Of Plasma-sprayed Zirconia Coatings, Acta Mater., 2003, 51, p 2457-2475

    Article  CAS  Google Scholar 

  44. Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, and H. Herman, Effects of Pores and Interfaces on Effective Properties of Plasma Sprayed Zirconia Coatings, Acta Mater., 2003, 51, p 5319-5334

    Article  CAS  Google Scholar 

  45. S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, Application of Image Analysis for Characterization of Porosity in Thermal Spray Coatings and Correlation with Small Angle Neutron Scattering, Surf. Coat. Technol., 2004, 187, p 6-16

  46. G. Sundararajan, N.M. Chavan, G. Sivakumar, and P. Sudharshan Phani, Evaluation of Parameters for Assessment of Inter-splat Bond Strength in Cold-sprayed Coatings, J. Thermal Spray Technol., 2010, 19, p 1255-1266.

Download references

Acknowledgments

The authors wish to thank the Director, ARCI for permission to publish this article. Suresh Babu would like to thank center for engineered coatings for extending their support in making available coating deposition and wear test facilities and Dr K Radha for carbon analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sundararajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitchuka, S.B., Basu, B. & Sundararajan, G. A Comparison of Mechanical and Tribological Behavior of Nanostructured and Conventional WC-12Co Detonation-Sprayed Coatings. J Therm Spray Tech 22, 478–490 (2013). https://doi.org/10.1007/s11666-013-9901-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9901-3

Keywords

Navigation