Skip to main content
Log in

Effect of Particle Morphology and Size Distribution on Cold-Sprayed Pure Titanium Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The effects of commercially pure titanium particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20-49 μm) on the cold spray process and resulting coating properties were investigated. Numerous powder and coating characterizations were performed including: powder oxygen and nitrogen contents, powder flowability, powder compressibility, coating microhardness, coating porosity, LOM/SEM analyses, and XRD. Compared to spherical powders, the sponge and irregular CP-Ti powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities. XRD results showed no new phases present when comparing the various feedstock powders to corresponding coatings. A higher particle temperature was also obtained with larger particle size for all feedstock powder morphologies processed with the same set of spray parameters. A spherical powder with 29 μm mean particle size was found to have the lowest porosity coating and best cold sprayability. The relationships of several as-cold sprayed coating characteristics to the ratio of particle impact and critical velocities were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V.K. Champagne, The Cold Spray Deposition Process: Fundamentals and Applications, Woodhead Publishing Ltd, Cambridge, 2007

    Book  Google Scholar 

  2. R.G. Maev and V. Leshchynsky, Introduction to Low Pressure Gas Dynamic Spray: Physics & Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

    Google Scholar 

  3. A. Papyrin, V. Kosarev, K.V. Klinkov, and V.M. Fomin, Cold Spray Technology, Elsevier Ltd., Oxford, 2006

    Google Scholar 

  4. E. Irissou, J.G. Legoux, A.N. Ryabinin, B. Jodoin, and C. Moreau, Review on Cold Spray Process and Technology: Part I—Intellectual Property, J. Therm. Spray Technol., 2008, 17(4), p 495-516

    Article  Google Scholar 

  5. T. Schmidt, H. Assadi, F. Gartner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808

    Article  Google Scholar 

  6. J. Kawakita, H. Katanoda, M. Watanabe, K. Yokoyama, and S. Kuroda, Warm Spraying: An Improved Spray Process to Deposit Novel Coatings, Surf. Coat. Technol., 2008, 202(18), p 4369-4373

    Article  CAS  Google Scholar 

  7. G. Bae, K. Kang, J.-J. Kim, and C. Lee, Nanostructure Formation and Its Effects on the Mechanical Properties of Kinetic Sprayed Titanium Coating, Mater. Sci. Eng. A, 2010, 527(23), p 6313-6319

    Article  Google Scholar 

  8. G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57(19), p 5654-5666

    Article  CAS  Google Scholar 

  9. K. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Grain Refinement in a Single Titanium Powder Particle Impacted at High Velocity, Scripta Mater., 2008, 59(7), p 768-771

    Article  CAS  Google Scholar 

  10. K. Kim and S. Kuroda, Amorphous Oxide Film Formed by Dynamic Oxidation During Kinetic Spraying of Titanium at High Temperature and Its Role in Subsequent Coating Formation, Scripta Mater., 2010, 63(2), p 215-218

    Article  CAS  Google Scholar 

  11. K. Kim, M. Watanabe, K. Mitsuishi, K. Iakoubovskii, and S. Kuroda, Impact Bonding and Rebounding Between Kinetically Sprayed Titanium Particle and Steel Substrate Revealed by High-Resolution Electron Microscopy, J. Phys. D: Appl. Phys., 2009, 42(6), p 5p

    Google Scholar 

  12. C.J. Li and W.Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167, p 278-283

    Article  CAS  Google Scholar 

  13. S.H. Zahiri, C.I. Antonio, and M. Jahedi, Elimination of Porosity in Directly Fabricated Titanium Via Cold Gas Dynamic Spraying, J. Mater. Process. Technol., 2009, 209(2), p 922-929

    Article  CAS  Google Scholar 

  14. S.H. Zahiri, S.C. Mayo, and M. Jahedi, Characterization of Cold Spray Titanium Deposits by X-Ray Microscopy and Microtomography, Microsc. Microanal., 2008, 14(3), p 260-266

    Article  CAS  Google Scholar 

  15. S.H. Zahiri, W. Yang, and M. Jahedi, Characterization of Cold Spray Titanium Supersonic Jet, J. Therm. Spray Technol., 2009, 18(1), p 110-117

    Article  CAS  Google Scholar 

  16. S. Gullzia, B. Tiganis, M.Z. Jahedi, N. Wright, T. Gengenbach, and C. MacRae, Effects of Cold Spray Process Gas Temperature on CP Titanium Structure, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B. Marple, M. Hyland, Y.-C. Lau, C.J. Li, R.S. Lima, and G. Montavon, Ed., 2009, p 237-242

  17. T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15(2), p 263-272

    Article  CAS  Google Scholar 

  18. D. Rafaja, T. Schucknecht, V. Klemm, A. Paul, and H. Berek, Microstructural Characterisation of Titanium Coatings Deposited Using Cold Gas Spraying on Al2O3 Substrates, Surf. Coat. Technol., 2009, 203(20-21), p 3206-3213

    Article  CAS  Google Scholar 

  19. J. Karthikeyan, C.M. Kay, J. Lindeman, R.S. Lima, and C. Berndt, Cold Spray Processing of Titanium Powder, Thermal Spray: Surface Engineering via Applied Research, C. Berndt, Ed., 2000, p 255-262

  20. T. Hussain, Cold Spraying of Titanium: A Review of Bonding Mechanisms, Microstructure and Properties, Key Eng. Mater., 2013, 533, p 53-90

    Article  CAS  Google Scholar 

  21. S.H. Zahiri, D. Fraser, and M. Jahedi, Recrystallization of Cold Spray-Fabricated CP Titanium Structures, J. Therm. Spray Technol., 2009, 18(1), p 16-22

    Article  CAS  Google Scholar 

  22. W. Wong, E. Irissou, A. Ryabinin, J.-G. Legoux, and S. Yue, Influence of Helium and Nitrogen Gases on the Properties of Cold Gas Dynamic Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2011, 20(1), p 213-226

    Article  CAS  Google Scholar 

  23. N. Cinca, M. Barbosa, S. Dosta, and J.M. Guilemany, Study of Ti Deposition onto Al Alloy by Cold Gas Spraying, Surf. Coat. Technol., 2010, 205(4), p 1096-1102

    Article  CAS  Google Scholar 

  24. H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176

    Article  CAS  Google Scholar 

  25. S. Gulizia, A. Trentin, S. Vezzù, S. Rech, P. King, M. Jahedi, and M. Guagliano, Characterisation of Cold Spray Titanium Coatings, Mater. Sci. Forum, 2010, 654-656, p 898-901

    Article  CAS  Google Scholar 

  26. W. Wong, A. Rezaeian, S. Yue, E. Irissou, and J.G. Legoux, Effects of Gas Temperature, Gas Pressure, and Particle Characteristics on Cold Sprayed Pure Titanium Coatings, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B. Marple, M. Hyland, Y.-C. Lau, C.J. Li, R.S. Lima, and G. Montavon, Ed., 2009, p 231-236

  27. R.E. Blose, B.H. Walker, R.M. Walker, and S.H. Froes, New Opportunities to Use Cold Spray Process for Applying Additive Features to Titanium Alloys, Met. Powder Rep., 2006, 61(9), p 30-37

    Article  Google Scholar 

  28. D. Christoulis, S. Guetta, V. Guipont, and M. Jeandin, The Influence of the Substrate on the Deposition of Cold-Sprayed Titanium: An Experimental and Numerical Study, J. Therm. Spray Technol., 2011, 20(3), p 523-533

    Article  CAS  Google Scholar 

  29. E. Baril, L.P. Lefebvre, and Y. Thomas, Interstitials Sources and Control in Titanium Pm Processes, PM2010 Powder Metallurgy World Congress (CD-Rom), European Powder Metallurgy Association, 2010, p 1-8

  30. D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine, Springer, Berlin, 2001

    Book  Google Scholar 

  31. S.R. Lampman, Compressibility and Compactibility of Metal Powders, ASM Handbook Volume 7: Powder Metal Technologies and Applications, 10 ed., S.R. Lampman Ed., ASM International, 1998, p 708-716

  32. E. Irissou, J.-G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16(5), p 661-668

    Article  CAS  Google Scholar 

  33. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550

    Article  CAS  Google Scholar 

  34. C.B. Henderson, Drag Coefficients of Spheres in Continuum and Rarefied Flows, AIAA J., 1976, 14(6), p 707-708

    Article  Google Scholar 

  35. A. Haider and O. Levenspiel, Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles, Powder Technol., 1989, 58(1), p 63-70

    Article  CAS  Google Scholar 

  36. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  CAS  Google Scholar 

  37. K. Mailhot, F. Gitzhofer, and M.I. Boulos, Absolute Coating Porosity Measurement Using Image Analysis, Thermal Spray 1998: Meeting the Challenges of the 21st Century, C. Coddet, Ed., ASM International, Materials Park, OH, 1998, p 917-922

    Google Scholar 

  38. S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, Application of Image Analysis for Characterization of Porosity in Thermal Spray Coatings and Correlation with Small Angle Neutron Scattering, Surf. Coat. Technol., 2004, 187(1), p 6-16

    Article  CAS  Google Scholar 

  39. P.C. King and M. Jahedi, Relationship Between Particle Size and Deformation in the Cold Spray Process, Appl. Surf. Sci., 2010, 256(6), p 1735-1738

    Article  CAS  Google Scholar 

  40. L.V.M. Antony and R.G. Reddy, Processes for Production of High-Purity Metal Powders, JOM, 2003, 55(3), p 14-18

    Article  CAS  Google Scholar 

  41. M.J. Donachie, Titanium: A Technical Guide, 2nd ed., ASM International, Materials Park, OH, 2000

    Google Scholar 

  42. W. Carson and B.H. Pittenger, Bulk Properties of Powders, ASM Handbook Volume 7: Powder Metal Technologies and Applications, 10th ed., S.R. Lampman, Ed., ASM International, Materials Park, OH, 1998, p 677-686

    Google Scholar 

  43. W. Wong, A. Rezaeian, E. Irissou, J.G. Legoux, and S. Yue, Cold Spray Characteristics of Commercially Pure Ti and Ti-6Al-4V, Adv. Mater. Res., 2010, 89-91, p 639-644

    Article  CAS  Google Scholar 

  44. R. Guinebretière, X-Ray Diffraction by Polycrystalline Materials, ISTE Ltd., London, 2007

    Book  Google Scholar 

  45. H. Gruner, P. Gruner, and J. Moens, Optimized Powder Feeding, a Key Parameter for Thermal Spraying, Thermal Spray 2005: Thermal Spray Connects: Explore Its Surfacing Potential!, E. Lugscheider, Ed., ASM International, Materials Park, OH, 2005, p 1558-1560

    Google Scholar 

  46. R.C. Dykhuizen and R.A. Neiser, Optimizing the Cold Spray Process, Thermal Spray 2003: Advancing the Science & Applying the Technology, C. Moreau and B. Marple, Ed., ASM International, Materials Park, OH, 2003, p 19-26

    Google Scholar 

  47. T.C. Jen, L. Li, W. Cui, Q. Chen, and X. Zhang, Effects of Shock Waves on the Particle Acceleration for Cold Gas Dynamic Spray, Am. Soc. Mech. Eng., Heat Transfer Division, (Publication) HTD, Article number IMECE2004-60723, 2004, 375(3), p 499-505

  48. X. Luo and H. Olivier, Gas Dynamic Principles and Experimental Investigations of Shock Tunnel Produced Coatings, J. Therm. Spray Technol., 2009, 18(4), p 546-554

    Article  CAS  Google Scholar 

  49. J. Pattison, S. Celotto, A. Khan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202(8), p 1443-1454

    Article  CAS  Google Scholar 

  50. C.J. Li, H.T. Wang, Q. Zhang, G.J. Yang, W.Y. Li, and H.L. Liao, Influence of Spray Materials and Their Surface Oxidation on the Critical Velocity in Cold Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 95-101

    Article  CAS  Google Scholar 

  51. W.Y. Li, C.J. Li, and H. Liao, Significant Influence of Particle Surface Oxidation on Deposition Efficiency, Interface Microstructure and Adhesive Strength of Cold-Sprayed Copper Coatings, Appl. Surf. Sci., 2010, 256(16), p 4953-4958

    Article  CAS  Google Scholar 

  52. L.P. Lefebvre and E. Baril, Effect of Oxygen Concentration and Distribution on the Compression Properties on Titanium Foams, Adv. Eng. Mater., 2008, 10(9), p 868-876

    Article  CAS  Google Scholar 

  53. H. Conrad, Effect of Interstitial Solutes on the Strength and Ductility of Titanium, Prog. Mater. Sci., 1981, 26(2-4), p 123-403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The cold spray equipment used for this study was funded by CFI project number 8246, McGill University (Montreal, Canada) with the support of Cold Gas Technology GmbH, Tecnar Automation Ltd., and Polycontrols Technologies Inc. The authors acknowledge the support of NSERC strategic grant and would like to thank J.F. Alarie, F. Belval, B. Harvey, M. Lamontagne, M. Laplume, J. Sykes, M. Thibodeau, and J.C. Tremblay from NRC for their technical support. Additional appreciation goes toward Dr. E. Baril and Dr. Y. Thomas for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, W., Vo, P., Irissou, E. et al. Effect of Particle Morphology and Size Distribution on Cold-Sprayed Pure Titanium Coatings. J Therm Spray Tech 22, 1140–1153 (2013). https://doi.org/10.1007/s11666-013-9951-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9951-6

Keywords

Navigation