Skip to main content
Log in

Nanocomposite Lanthanum Zirconate Thermal Barrier Coating Deposited by Suspension Plasma Spray Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This work seeks to develop an innovative nanocomposite thermal barrier coating (TBC) exhibiting low thermal conductivity and high durability compared with that of current TBCs. To achieve this objective, nanosized lanthanum zirconate particles were selected for the topcoat of the TBC system, and a new process—suspension plasma spray—was employed to produce desirable microstructural features: the nanocomposite lanthanum zirconate TBC contains ultrafine splats and high volume porosity, for lower thermal conductivity, and better durability. The parameters of plasma spray experiment included two main variables: (i) spray distance varying from 40 to 80 mm and (ii) the concentration of suspension 20, 25, and 30 wt.%, respectively. The microstructure of obtained coatings was characterized with scanning electron microscope and x-ray diffraction. The porosity of coatings is in the range of 6-10%, and the single phase in the as-sprayed coatings was pyrochlore lanthanum zirconate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  Google Scholar 

  2. C.U. Hardwicke and Y.C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J. Therm. Spray Technol., 2013, 22(5), p 564-576

    Article  Google Scholar 

  3. U. Leushake, T. Krell, and U. Schulz, Graded Thermal Barrier Coating Systems for Gas Turbine Applications, Materialwiss Werkst, 1997, 28(8), p 391-394

    Article  Google Scholar 

  4. A. Maricocchi, A. Bartz, and D. Wortman, Pvd Tbc Experience on Ge Aircraft Engines, J. Therm. Spray Technol., 1997, 6(2), p 193-198

    Article  Google Scholar 

  5. Z.H. Han, H.J. Wang, S.K. Zhou, and B.S. Xu, Characterization of Functionally Graded ZrO2 Thermal Barrier Coatings Sprayed by Supersonic Plasma Spray with Dual Powder Feed Ports, J. Cent. South Univ. Technol., 2005, 12, p 257-260

    Article  Google Scholar 

  6. R. Vassen, E. Traeger, and D. Stover, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 351-361

    Article  Google Scholar 

  7. D.Y. Chen, M. Gell, E.H. Jordan, E. Cao, and X.Q. Ma, Thermal Stability of Air Plasma Spray and Solution Precursor Plasma Spray Thermal Barrier Coatings, J. Am. Ceram. Soc., 2007, 90(10), p 3160-3166

    Article  Google Scholar 

  8. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10

    Article  Google Scholar 

  9. H. Peng, L. Wang, L. Guo, W.H. Miao, H.B. Guo, and S.K. Gong, Degradation of EB-PVD Thermal Barrier Coatings Caused by CMAS Deposits, Prog. Nat. Sci., 2012, 22(5), p 461-467

    Article  Google Scholar 

  10. H.B. Guo, S.K. Gong, K.A. Khor, and H.B. Xu, Effect of Thermal Exposure on the Microstructure and Properties of EB-PVD Gradient Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 168(1), p 23-29

    Article  Google Scholar 

  11. H.F. Chen, Y.F. Gao, H.J. Luo, and S.Y. Tao, Preparation and Thermophysical Properties of La2Zr2O7 Coatings by Thermal Spraying of an Amorphous Precursor, J. Therm. Spray Technol., 2011, 20(6), p 1201-1208

    Article  Google Scholar 

  12. C.J. Wang, Y. Wang, Y.L. Cheng, W.Z. Huang, Z.S. Khan, X.Z. Fan, B.L. Zou, and X.Q. Cao, Preparation and Thermophysical Properties of Nano-sized Ln2Zr2O7 (Ln = La, Nd, Sm, and Gd) Ceramics with Pyrochlore Structure, J. Mater. Sci., 2012, 47(10), p 4392-4399

    Article  Google Scholar 

  13. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and L.L. Yu, Preparation and Characterization of Nanostructured La2Zr2O7 Feedstock Used for Plasma Spraying, Powder Technol., 2011, 212(1), p 267-277

    Article  Google Scholar 

  14. C.S. Ramachandran, V. Balasubramanian, and P.V. Ananthapadmanabhan, Synthesis, Spheroidization and Spray Deposition of Lanthanum Zirconate Using Thermal Plasma Process, Surf. Coat. Technol., 2012, 206(13), p 3017-3035

    Article  Google Scholar 

  15. J.Y. Xiang, S.H. Chen, J.H. Huang, W.J. Liang, Y.J. Cao, R.J. Wang, and Q. He, Synthesis Kinetics and Thermophysical Properties of La2(Zr0.7Ce0.3)2O7 Ceramic for Thermal Barrier Coatings, J. Rare Earths, 2012, 30(3), p 228-232

    Article  Google Scholar 

  16. O. Fabrichnaya, M.J. Kriegel, J. Seidel, G. Savinykh, L.P. Ogorodova, I.A. Kiseleva, and H.J. Seifert, Calorimetric Investigation of the La2Zr2O7, Nd2Zr2O7, Sm2Zr2O7 and LaYO3 Compounds and CALPHAD Assessment of the La2O3-Y2O3 System, Thermochim. Acta, 2011, 526(1-2), p 50-57

    Article  Google Scholar 

  17. Y.P. Tong, Y.P. Wang, Z.X. Yu, X. Wang, X.J. Yang, and L.D. Lu, Preparation and Characterization of Pyrochlore La2Zr2O7 Nanocrystals by Stearic Acid Method, Mater. Lett., 2008, 62(6-7), p 889-891

    Article  Google Scholar 

  18. S. Yugeswaran, A. Kobayashi, P.V. Ananthapadmanabhan, and L. Lusvarghi, Influence of Processing Variables on the Formation of La2Zr2O7 in Transferred Arc Plasma Torch Processing, Curr. Appl. Phys., 2011, 11(6), p 1394-1400

    Article  Google Scholar 

  19. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Finite Element Simulation of Residual Stress of Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Using Birth and Death Element Technique, Comput. Mater. Sci., 2012, 53(1), p 117-127

    Article  Google Scholar 

  20. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Thermal Shock Behavior of 8YSZ and Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Fabricated by Atmospheric Plasma Spraying, Ceram. Int., 2012, 38(5), p 3595-3606

    Article  Google Scholar 

  21. H.F. Chen, Y.F. Gao, S.Y. Tao, Y. Liu, and H.J. Luo, Thermophysical Properties of Lanthanum Zirconate Coating Prepared by Plasma Spraying and the Influence of Post-Annealing, J. Alloys Compd., 2009, 486(1-2), p 391-399

    Article  Google Scholar 

  22. F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Enhancement of Amorphous Phase Formation in Alumina-YSZ Coatings Deposited by Suspension Plasma Spray Process, Surf. Coat. Technol., 2013, 220, p 191-198

    Article  Google Scholar 

  23. G. Mauer, A. Guignard, R. Vassen, and D. Stover, Process Diagnostics in Suspension Plasma Spraying, Surf. Coat. Technol., 2010, 205(4), p 961-966

    Article  Google Scholar 

  24. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 226-239

    Article  Google Scholar 

  25. M. Mueller, R. Henne, G. Schiller, M.I. Boulos, F. Gitzhofer, and R.B. Heimann, Radio-Frequency Suspension Plasma Spraying of Cobalt Spinel Anodes for Alkaline Water Electrolysis, Thermal Spray, 1998, 1, 2, p 1523-1527

  26. C.S. Hwang and C.C. Tzeng, A Nanostructured YSZ Film Coating by Liquid Suspension Injection into an Aps Plasma Flame, J. Adv. Oxid. Technol., 2005, 8(1), p 85-89

    Google Scholar 

  27. G. Schiller, M. Muller, and F. Gitzhofer, Preparation of Perovskite Powders and Coatings by RF-Suspension Plasma Spraying, Thermal Spray, 1998, 1, 2, p 1363-1367

    Google Scholar 

  28. R. Rampon, F.L. Toma, G. Bertrand, and C. Coddet, Liquid Plasma Sprayed Coatings of Yttria-Stabilized Zirconia for SOFC Electrolytes, J. Therm. Spray Technol., 2006, 15(4), p 682-688

    Article  Google Scholar 

  29. E.M. Cotler, D.Y. Chen, and R.J. Molz, Pressure-Based Liquid Feed System for Suspension Plasma Spray Coatings, J. Therm. Spray Technol., 2011, 20(4), p 967-973

    Article  Google Scholar 

  30. H. Kaβner, R. Vaβen, and D. Stöver, Study on Instant Droplet and Particle Stages During Suspension Plasma Spraying (SPS), Surf. Coat. Technol., 2008, 202(18), p 4355-4361

    Article  Google Scholar 

  31. P. Fauchais, V. Rat, J.F. Coudert, R. Etchart-Salas, and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coat. Technol., 2008, 202(18), p 4309-4317

    Article  Google Scholar 

  32. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807-2829

    Article  Google Scholar 

  33. D.Y. Chen, E.H. Jordan, and M. Gell, Suspension Plasma Sprayed Composite Coating Using Amorphous Powder Feedstock, Appl. Surf. Sci., 2009, 255(11), p 5935-5938

    Article  Google Scholar 

  34. C. Wang, Y. Wang, L. Wang, X. Sun, C. Yang, Z. Zou, and X. Li, Hydrothermal Assisted Synthesis and Hot-Corrosion Resistance of Nano Lanthanum Zirconate Particles, Ceram. Int., 2014, 40, p 3981-3988

    Article  Google Scholar 

  35. K. VanEvery, M.J.M. Krane, and R.W. Trice, Parametric Study of Suspension Plasma Spray Processing Parameters on Coating Microstructures Manufactured from Nanoscale Yttria-Stabilized Zirconia, Surf. Coat. Technol., 2012, 206(8-9), p 2464-2473

    Article  Google Scholar 

  36. H.B. Xiong and J.Z. Lin, Nanoparticles Modeling in Axially Injection Suspension Plasma Spray of Zirconia and Alumina Ceramics, J. Therm. Spray Technol., 2009, 18(5-6), p 887-895

    Article  Google Scholar 

  37. R. Jaworski, L. Pawlowski, F. Roudet, S. Kozerski, and F. Petit, Characterization of Mechanical Properties of Suspension Plasma Sprayed TiO2 Coatings Using Scratch Test, Surf. Coat. Technol., 2008, 202(12), p 2644-2653

    Article  Google Scholar 

  38. D. Waldbillig and O. Kesler, Effect of Suspension Plasma Spraying Process Parameters on YSZ Coating Microstructure and Permeability, Surf. Coat. Technol., 2011, 205(23-24), p 5483-5492

    Article  Google Scholar 

  39. P. Fauchais, J.F. Coudert, M. Vardelle, A. Vardelle, and A. Denoirjean, Diagnostics of Thermal Spraying Plasma Jets, J. Therm. Spray Technol., 1992, 1(2), p 117-128

    Article  Google Scholar 

  40. C. Petot, M. Ducos, and G. Petotervas, Thermal Spray Spinel Coatings on Steel Substrates—Influence of the Substrate Composition and Temperature, J. Eur. Ceram. Soc., 1995, 15(7), p 637-642

    Article  Google Scholar 

  41. L. Łatka, A. Cattini, L. Pawłowski, S. Valette, B. Pateyron, J.-P. Lecompte, R. Kumar, and A. Denoirjean, Thermal Diffusivity and Conductivity of Yttria Stabilized Zirconia Coatings Obtained by Suspension Plasma Spraying, Surf. Coat. Technol., 2012, 208, p 87-91

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the young scientist project of Natural Science Foundation of China (NSFC) (No. 51303087) and the program for young teachers’ scientific research in Qiqihar University (No. 2011k-M24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wang, Y., Wang, L. et al. Nanocomposite Lanthanum Zirconate Thermal Barrier Coating Deposited by Suspension Plasma Spray Process. J Therm Spray Tech 23, 1030–1036 (2014). https://doi.org/10.1007/s11666-014-0068-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0068-3

Keywords

Navigation