Skip to main content

Advertisement

Log in

Development of Holistic Three-Dimensional Models for Cold Spray Supersonic Jet

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A three-dimensional, computational fluid dynamics (CFD) model is developed to estimate cold spray gas conditions. This model is calibrated and validated with respect to thermal history of a substrate exposed to the cold spray supersonic jet. The proposed holistic model is important to track state of gas and particles from injection point to the substrate surface with significant benefits for optimization of very rapid "nanoseconds" cold spray deposition. The three-dimensional model is developed with careful attention with respect to computation time to benefit broader cold spray industry with limited access to supercomputers. The k-ε-type CFD model is evaluated using measured temperature for a titanium substrate exposed to cold spray nitrogen at 800 °C and 3 MPa. The model important parameters are detailed including domain meshing method with turbulence, and dissipation coefficients during spraying. Heat transfer and radiation are considered for the de Laval nozzle used in experiments. The calibrated holistic model successfully estimated state of the gas for chosen high temperature and high pressure cold spray parameters used in this study. Further to this, the holistic model predictions with respect to the substrate maximum temperature had a good agreement with earlier findings in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

c :

Local speed of sound in fluid (m/s)

c p :

Specific heat capacity at constant pressure (m2/s2 K)

C ε1 :

k-ε turbulence model constant

C ε2 :

k-ε turbulence model constant

C μ :

k-ε turbulence model constant

C Clip :

Clip factor coefficient for turbulence energy

C Scale :

Scaling coefficient for curvature correction

g :

Gravity vector (m/s2)

h :

Specific static (thermodynamic) enthalpy (m2/s2)

h tot :

Specific total enthalpy (m2/s2)

k :

Turbulent kinetic energy per unit mass (m2/s2)

M :

Local Mach number, U/c (Dimensionless)

p′:

Modified pressure (kg/m s2)

p :

Static (thermodynamic) pressure (kg/m s2)

P k :

Turbulence energy (kg/m s3)

p ref :

Reference pressure (kg/m s2)

Prt :

Turbulent Prandtl Number, c p μtt (Dimensionless)

p tot :

Total pressure (kg/m s2)

R 0 :

Universal gas constant = 8.3145 (m3 Pa /K mol)

Re:

Reynolds number (Dimensionless)

Sct :

Turbulent Schmidt Number, μtt (Dimensionless)

s strnr :

Shear strain rate (1/s)

t :

Time (s)

T dom :

Domain temperature (K)

T stat :

Static (thermodynamic) temperature (K)

T tot :

Total temperature (K)

U :

Velocity magnitude (m/s)

u :

Fluctuating velocity component (m/s)

ε :

Turbulent (Eddy) dissipation rate (m2/s3)

κ :

Von Karman constant (0.41)

λ :

Thermal conductivity (kg/m s3 K)

μ :

Molecular (dynamic) viscosity (kg/m s)

μ eff :

Effective viscosity, μ + μ t (kg/m s)

μ t :

Turbulent (Eddy) viscosity (kg/m s)

ρ :

Density (kg/m3)

σ k :

k-ε turbulence model constant (1)

σ ε :

k-ε turbulence model constant (1.3)

Γt :

Turbulent diffusivity (kg/m s)

θ:

Nondimensionalized temperature

T g :

Cold spray stagnation temperature (ºC)

T w :

Measured substrate temperature (ºC)

T :

Environment temperature (ºC)

References

  1. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V.M. Fomin, Cold Spray Technology, 1st edn., Elsevier, 2007, p 14-20

  2. S.H. Zahiri, W. Yang, and M. Jahedi, Characterization of Cold Spray Titanium Supersonic Jet, J. Therm. Spray Technol., 2009, 18(1), p 110-117

    Article  Google Scholar 

  3. M. Fukumoto, M. Mashiko, M. Yamada, and E. Yamaguchi, Deposition Behavior of Copper Fine Particles onto Flat Substrate Surface in Cold Spraying, J. Therm. Spray Technol., 2010, 19(1–2), p 89-94

    Article  Google Scholar 

  4. H. Katanoda, M. Fukuhara, and N. Iino, Numerical Study of Combination Parameters for Particle Impact Velocity and Temperature in Cold Spray, J. Therm. Spray Technol., 2007, 16(5-6), p 627-633

    Article  Google Scholar 

  5. P.C. King and M. Jahedi, Relationship Between Particle Size and Deformation in the Cold Spray Process, Appl. Surf. Sci., 2010, 256(6), p 1735-1738

    Article  Google Scholar 

  6. C.J. Li and W.Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167(2–3), p 278-283

    Article  Google Scholar 

  7. M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, M. Sugimoto, and M. Izawa, Effect of Substrate Temperature on Deposition Behavior of Copper Particles on Substrate Surfaces in the Cold Spray Process, J. Therm. Spray Technol., 2007, 16, p 643-650

    Article  Google Scholar 

  8. W. Wong, E. Irissou, A. Ryabinin, J.G. Legoux, and S. Yue, Influence of Helium and Nitrogen Gases on the Properties of Cold Gas Dynamic Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2010, 20, p 213-226

    Article  Google Scholar 

  9. J.G. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc, and Tin Coatings, J. Therm. Spray Technol., 2007, 16, p 619-626

    Article  Google Scholar 

  10. W. Li, S. Yin, X. Guo, H. Liao, X. Wang, and C. Coddet, An Investigation on Temperature Distribution Within the Substrate and Nozzle Wall in Cold Spraying by Numerical and Experimental Methods, J. Therm. Spray Technol., 2012, 21, p 41-48

    Article  Google Scholar 

  11. S. Yin, X. Wang, W. Li, and X. Guo, Examination on Substrate Preheating Process in Cold Gas Dynamic Spraying, J. Therm. Spray Technol., 2011, 20(4), p 852-859

    Article  Google Scholar 

  12. D.C. Wilcox, Turbulence Modelling for CFD, 3rd edn., DCW Industries, La Canada Flintridge CA 91011, 2000

  13. S. Yin, W.Y. Li, and Y. Li, Numerical Study on the Effect of Substrate Size on the Supersonic Jet Flow and Temperature Distribution Within the Substrate in Cold Spraying, J. Therm. Spray Technol., 2012, 21(3-4), p 628-635

    Article  Google Scholar 

  14. A. Ryabinin, E. Irissou, A. McDonald, and J.G. Legoux, Simulation of Gas-Substrate Heat Exchange During Cold Gas Dynamic Spraying, Int. J. Therm. Sci., 2012, 56, p 12-18

    Article  Google Scholar 

  15. C. Lee, M. Chung, K. Lim, and Y. Kang, Measurement of Heat Transfer from a Supersonic Impinging Jet onto an Inclined Flat Plate at 45°, J. Heat Transf., 1991, 113, p 769-772

    Article  Google Scholar 

  16. V. Ramanujachari, S. Vijaykant, R. Roy, and P. Ghanegaonkar, Heat Transfer Due to Supersonic Flow Impingement on a Vertical Plate, Int. J. Heat Mass Transf., 2005, 48, p 3707-3712

    Article  Google Scholar 

  17. I. Belov, I. Ginzburg, and L. Shub, Supersonic Underexpanded Jet Impingement Upon Flat Plate, Int. J. Heat Mass Transf., 1973, 16, p 2067-2076

    Article  Google Scholar 

  18. M. Rahimi, I. Owen, and J. Mistry, Impingement Heat Transfer in an Under-Expanded Axisymmetric Air Jet, Int. J. Heat Mass Transf., 2003, 46, p 263-272

    Article  Google Scholar 

  19. T.D. Phan, S.H. Masood, M.Z. Jahedi, and S. Zahiri, Residual Stresses in Cold Spray Process Using Finite Element Analysis, Mater. Sci. Forum, 2010, 654-656, p 1642-1645

    Article  Google Scholar 

  20. M. Karimi, A. Fartaj, G. Rankin, D. Vanderzwet, W. Birtch, and J. Villafuerte, Numerical Simulation of the Cold Gas Dynamic Spray Process, J. Therm. Spray Technol., 2006, 15(4), p 518-523

    Article  Google Scholar 

  21. H. Tabbara, S. Gu, D.G. McCartney, T.S. Price, and P.H. Shipway, Study on Process Optimization of Cold Gas Spraying, J. Therm. Spray Technol., 2011, 20(3), p 608-620

    Article  Google Scholar 

  22. W.Y. Li, S. Yin, X. Guo, H. Liao, X.F. Wang, and C. Coddet, An Investigation on Temperature Distribution Within the Substrate and Nozzle Wall in Cold Spraying by Numerical and Experimental Methods, J. Therm. Spray Technol., 2012, 21(1), p 41-48

    Article  Google Scholar 

  23. E. Smith, J. Mi, G. Nathan, and B. Dally, Preliminary Examination of a Round Jet Initial Conditions Anomaly for k-ε Turbulence Model, 15th Australian Fluid Mechanics Conference, The University of Sydney, Sydney, Australia, 2004, p 13-17

    Google Scholar 

  24. F.R. Menter, Two-equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J., 1994, 32(8), p 1598-1605

    Article  Google Scholar 

  25. F.R. Menter, Eddy-Viscosity Transport Equations and Their Relation to the k-ε Model, J. Fluids Eng., 1997, 119, p 876-884

    Article  Google Scholar 

  26. S. Gu, C.N. Eastwick, K.A. Simmons, and D.G. McCartney, Computational Fluid Dynamic Modeling of Gas Flow Characteristics in a High-Velocity Oxy-Fuel Thermal Spray System, J. Therm. Spray Technol., 2000, 10(3), p 461-469

    Google Scholar 

  27. J.E. Bardina, P.G. Huang, and T.J. Coakley, Turbulence Modeling Validation, Testing, and Development, NASA Tech. Memo., 1997, 110446, p 32-34

    Google Scholar 

  28. B.E. Poling, J.M. Prausnitz, and J.P. O’Connell, The Properties of Gases and Liquids, Vol. 5, McGraw-Hill, New York, 2001

    Google Scholar 

  29. H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, 1979

    Google Scholar 

  30. P.R. Spalart, Strategies for Turbulence Modelling and Simulations, Int. J. Heat Fluid Flow, 2000, 21(3), p 252-263

    Article  Google Scholar 

  31. H. Grotjans and F.R. Menter, Wall Functions for General Application CFD Codes, In Proceedings of Fourth European Computational Fluid Dynamics Conference, Wiley, Athens, 1998, p 1112-1117

  32. A. McDonald, A.N. Ryabinin, E. Irissou, and J.G. Legoux, Gas-Substrate Heat Exchange During Cold-Gas Dynamic Spraying, J. Therm. Spray Technol., 2013, 22, p 391-397

    Article  Google Scholar 

  33. R. Boyer, G. Welsch, and E.W. Collings, Materials Properties Handbook: Titanium Alloys, 3 edn., ASM Int., The Mat. Inf. Soc., 2003

  34. G. Franz, F. Abed-Meraim, J.P. Lorrain, T.B. Zined, X. Lemoine, and M. Berveiller, Ellipticity Loss Analysis for Tangent Moduli Deduced from a Large Strain Elastic-Plastic Self-Consistent Model, Int. J. Plast., 2009, 25(2), p 205-238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Zahiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahiri, S.H., Phan, T.D., Masood, S.H. et al. Development of Holistic Three-Dimensional Models for Cold Spray Supersonic Jet. J Therm Spray Tech 23, 919–933 (2014). https://doi.org/10.1007/s11666-014-0113-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0113-2

Keywords

Navigation