Skip to main content
Log in

Mechanical Properties of Cold Gas Dynamic-Sprayed Near-Net-Shaped Fin Arrays

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This work focuses on the study of the adhesion and thermal performance of near-net-shaped pyramidal fin arrays manufactured by cold spray on aluminum alloy substrate coated with various bond coats: a cold-sprayed bond coat as well as nitrogen- and air-propelled arc-sprayed bond coats. Furthermore, the effects of the fin density, fin height, and substrate surface roughness on the adhesion strength of the fins deposited on Al6061 substrates were characterized. It was found that the fin density, the fin height, and the substrate roughness have little impact on the adhesion strength of this system. The adhesion strength was found to be inversely proportional to the surface hardness when investigating these parameters for the different thermal-spray bond coatings, with all the fin systems having a much greater strength than the theoretical application stresses. Finally, it was found that the increase in the fin’s base layer’s roughness increases the overall heat transfer, with the bond coat material having a negligible effect on the thermal resistance for this type of heat-exchanger configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(\Delta P_{\text{fin}}\) :

Fin differential pressure [Pa]

\(\Delta T_{1}\) :

Inlet temperature difference [K]

\(\Delta T_{2}\) :

Outlet temperature difference [K]

\(\Delta T_{\text{lm}}\) :

Log mean temperature difference [K]

\(\varepsilon\) :

Relative surface roughness

\(\eta\) :

Fan efficiency

\(\rho\) :

Fluid density [kg/m3]

\(\tau_{\text{d}}\) :

Fluid drag shear stress [Pa]

\(A_{\text{base}}\) :

Base area [m2]

\(A_{\text{cond}}\) :

Conduction area [m2]

\(A_{\text{conv}}\) :

Convection area [m2]

\(A_{\text{front}}\) :

Frontal area [m2]

\(C_{\text{d}}\) :

Drag coefficient

\({\text{Cp}}\) :

Fluid’s specific heat capacity \([ {\text{kJ/(kg}} \, {\rm{K}})]\)

\(D_{\text{h}}\) :

Hydraulic diameter [m]

\(e_{\text{v}}\) :

Pumping power per unit volume [kW/m3]

\(H\) :

Fin height [m]

\(h\) :

Convective heat-transfer coefficient [W/(m2 · K)]

\(k\) :

Thermal conductivity [W/(m · K)]

\(L\) :

Base length (streamwise direction) [m]

\(\dot{m}\) :

Mass-flow rate [kg/s]

\(q\) :

Heat flux [W/m2]

\(R_{\text{cond}}\) :

Conduction thermal resistance [K/W]

\(R_{\text{conv}}\) :

Convection thermal resistance [K/W]

\(R_{\text{eq}}\) :

Equivalent thermal resistance [K/W]

\(r\) :

Surface roughness [m]

\(T_{\text{in}}\) :

Inlet fluid temperature [K]

\(T_{\text{out}}\) :

Outlet fluid temperature [K]

\(t\) :

Conduction length [m]

\(U\) :

Fluid velocity [m/s]

\({\text{UA}}_{\text{conv}}\) :

Convection thermal conductance [W/K]

\({\text{UA}}_{v}\) :

Thermal conductance per unit volume \([ {\text{kW/(m}}^{ 3} {\text{ K)]}}\)

\(V\) :

Volume [m3]

\(\dot{V}_{f}\) :

Volumetric flow rate [m3/s]

References

  1. A.B. Lovins, Small is Profitable: The Hidden Economic Benefits of Making Electrical Resources the Right Size, Rocky Mountain Institute, 2002

  2. S.M. Kaplan and F. Sissine, Smart Grid: Modernizing Electric Power Transmission and Distribution; Energy Independence, Storage and Security; Energy Independence and Security Act … and Resiliency; Integra, TheCapitol.Net Inc., Alexandria, 2009

  3. D. Bohn, Micro Gas Turbine and Fuel Cell: A Hybrid Energy Conversion System with High Potential, NATO Research and Technology Organisation, 2005

  4. J. Tian, T. Kim, T.J. Lu, H.P. Hodson, D.T. Queheillalt, D.J. Sypeck, and H.N.G. Wadley, The Effects of Topology Upon Fluid-Flow and Heat-Transfer Within Cellular Copper Structures, Int. J. Heat Mass Transf., 2004, 47(14–16), p 3171-3186

    Article  Google Scholar 

  5. Z. Anxionnaz, M. Cabassud, C. Gourdon, and P. Tochon, Heat Exchanger/Reactors (HEX Reactors): Concepts, Technologies: State-of-the-Art, Chem. Eng. Process., 2008, 47(12), p 2029-2050

    Article  Google Scholar 

  6. R.L. Shaner, Heat Exchanger Having Metal Wire Screens, and Method of Making Stack of Screens Therefor, US4840228, Year of Priority (Issued): 1985 (1989)

  7. J. Chisholm, Method of Making a Crimped Wire Mesh Heat Exchanger/Sink, US4843693, Year of Priority (Issued): 1988 (1989)

  8. J. Assaad, A. Corbeil, P. Richer, and B. Jodoin, Novel Stacked Wire Mesh Compact Heat Exchangers Produced Using Cold Spray, J. Therm. Spray Technol., 2011, 20(6), p 1192-1200

    Article  Google Scholar 

  9. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray, J. Therm. Spray Technol., 2013, 22(7), p 1210-1221

    Article  Google Scholar 

  10. P. Dupuis, Y. Cormier, A. Farjam, B. Jodoin, and A. Corbeil, Performance Evaluation of Near-Net Pyramidal Shaped Fin Arrays Manufactured by Cold Spray, Int. J. Heat Mass Transf., 2014, 69, p 34-43

    Article  Google Scholar 

  11. Y. Cormier, P. Dupuis, A. Farjam, B. Jodoin, and A. Corbeil, Additive Manufacturing of Pyramidal Pin Fins: Height and Fin Density Effects Under Forced Convection, Int. J. Heat Mass Transf., 2014, 75, p 235-244

    Article  Google Scholar 

  12. H.R. Salimi Jazi, J. Mostaghimi, S. Chandra, L. Pershin, and T. Coyle, Spray-Formed, Metal-Foam Heat Exchangers for High Temperature Applications, J. Thermal Sci. Eng. Appl., 2009, 1(3), p 1-7

    Google Scholar 

  13. F. Azarmi, J. Saaedi, T.W. Coyle, and J. Mostaghimi, Microstructure Characterization of Alloy 625 Deposited on Nickel Foam Using Air Plasma Spraying, Adv. Eng. Mater., 2008, 10(5), p 459-465

    Article  Google Scholar 

  14. J.G. Legoux and S. Dallaire, Adhesion Mechanisms of Arc-Sprayed Zinc on Concrete, J. Therm. Spray Technol., 1995, 4(4), p 395-400

    Article  Google Scholar 

  15. X. Wang, J. Heberlein, E. Pfender, and W. Gerberich, Effect of Nozzle Configuration, Gas Pressure, and Gas Type on Coating Properties in Wire Arc Spray, J. Therm. Spray Technol., 1999, 8(4), p 565-575

    Article  Google Scholar 

  16. R. Drehmann, T. Grund, T. Lampke, B. Wielage, K. Manygoats, T. Schucknecht, and D. Rafaja, Splat Formation and Adhesion Mechanisms of Cold Gas-Sprayed Al Coatings on Al2O3 Substrates, J. Therm. Spray Technol., 2014, 23(1–2), p 68-75

    Article  Google Scholar 

  17. D.J. Varacalle, D.P. Guillen, D.M. Deason, W. Rhodaberger, and E. Sampson, Effect of Grit-Blasting on Substrate Roughness and Coating Adhesion, J. Therm. Spray Technol., 2006, 15(3), p 348-355

    Article  Google Scholar 

  18. M. Yandouzi, A.J. Böttger, R.W.A. Hendrikx, M. Brochu, P.F. Richer, A. Charest, and B. Jodoin, Microstructure and Mechanical Properties of B4C Reinforced Al-Based Matrix Composite Coatings Deposited by CGDS and PGDS Processes, Surf. Coat. Technol., 2010, 205, p 2234-2246

    Article  Google Scholar 

  19. EN 15340, European Standard Method-Determination of Shear Load Resistance of Thermally Sprayed Coatings, 2007, p. A91

  20. J.R. Davis, Ed., Handbook of Thermal Spray Technology, ASM International, 2004

  21. P.H. Shipway, D.G. McCartney, and T. Sudaprasert, Sliding Wear Behaviour of Conventional and Nanostructured HVOF Sprayed WC-Co Coatings, Wear, 2005, 259(7–12), p 820-827

    Article  Google Scholar 

  22. S. Naik, S.D. Probert, and M.J. Shilston, Forced Convective Steady-State Heat Transfers From Shrouded Vertical Fin Arrays Aligned Parallel to an Undisturbed Air-Stream, Appl. Energy, 1987, 26, p 137-158

    Article  Google Scholar 

  23. J.J. Hwang and T.M. Liou, Heat Transfer and Friction in a Low-Aspect-Ratio Rectangular Channel with Staggered Perforated Ribs on Two Opposite Walls, ASME J. Heat Transfer, 1995, 117(11), p 843-850

    Article  Google Scholar 

  24. R.W. Fox, P.J. Pritchard, and A.T. McDonald, Introduction to Fluid Mechanics, 7th ed., Wiley, Hoboken, NJ, 2008

    Google Scholar 

  25. N. Sahiti, F. Durst, and A. Dewan, Heat Transfer Enhancement by Pin Elements, Int. J. Heat Mass Transf., 2005, 48, p 4738-4747

    Article  Google Scholar 

  26. N. Sahiti, F. Durst, and A. Dewan, Strategy for Selection of Elements for Heat Transfer Enhancement, Int. J. Heat Mass Transf., 2006, 49, p 3392-3400

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the MITACS Accelerate program for the financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Cormier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cormier, Y., Dupuis, P., Jodoin, B. et al. Mechanical Properties of Cold Gas Dynamic-Sprayed Near-Net-Shaped Fin Arrays. J Therm Spray Tech 24, 476–488 (2015). https://doi.org/10.1007/s11666-014-0203-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0203-1

Keywords

Navigation