Skip to main content
Log in

Stresses and Cracking During Chromia-Spinel-NiO Cluster Formation in TBC Systems

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal barrier coatings (TBC) are used in gas turbines to reduce the temperatures in the underlying substrate. There are several mechanisms that may cause the TBC to fail; one of them is cracking in the coating interface due to extensive oxidation. In the present study, the role of so called chromia-spinel-NiO (CSN) clusters in TBC failure was studied. Such clusters have previously been found to be prone to cracking. Finite element modeling was performed on a CSN cluster to find out at which stage of its formation it cracks and what the driving mechanisms of cracking are. The geometry of a cluster was obtained from micrographs and modeled as close as possible. Nanoindentation was performed on the cluster to get the correct Young’s moduli. The volumetric expansion associated with the formation of NiO was also included. It was found that the cracking of the CSN clusters is likely to occur during its last stage of formation as the last Ni-rich core oxidizes. Furthermore, it was shown that the volumetric expansion associated with the oxidation only plays a minor role and that the main reason for cracking is the high coefficient of thermal expansion of NiO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.W. Goward, Progress in Coatings for Gas Turbine Airfoils, Surf. Coat. Technol., 1998, 109, p 73-79

    Article  Google Scholar 

  2. G.W. Goward, Overview Protective Coatings—Purpose, Role, and Design, Mater. Sci. Technol., 1986, 2, p 194-200

    Article  Google Scholar 

  3. J.T. Demasi-Marcin and D.K. Gupta, Protective Coatings in the Gas Turbine Engine, Surf. Coat. Technol., 1994, 68-69, p 1-9

    Article  Google Scholar 

  4. R. Vassen, A. Stuke, D. Sto, and F. Ju, Recent Developments in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18, p 181-186

    Article  Google Scholar 

  5. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6, p 35-42

    Article  Google Scholar 

  6. J. Davis, Handbook of Thermal Spray Technology, ASM International, Materials Park, OH, 2004

    Google Scholar 

  7. M. Ahrens and D. Stover, Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings as a Function of Interface Roughness and Oxide Scale Thickness, Surf. Coatings Technol., 2002, 161, p 26-35

    Article  Google Scholar 

  8. J. Aktaa, K. Sfar, and D. Munz, Assessment of TBC Systems Failure Mechanisms Using a Fracture Mechanics Approach, Acta Mater., 2005, 53, p 4399-4413

    Article  Google Scholar 

  9. M. Bäker, J. Rösler, and G. Heinze, A Parametric Study of the Stress State of Thermal Barrier Coatings Part II: Cooling Stresses, Acta Mater., 2005, 53, p 469-476

    Article  Google Scholar 

  10. S.N. Basu, G. Ye, R. Khare, B. McCandless, M. Gevelber, and D. Wroblewski, Dependence of Splat Remelt and Stress Evolution on Surface Roughness Length Scales in Plasma Sprayed Thermal Barrier Coatings, Int. J. Refract. Met. Hard Mater., 2009, 27, p 479-484

    Article  Google Scholar 

  11. T. Beck, M. Bialas, P. Bednarz, L. Singheiser, K. Bobzin, N. Bagcivan, D. Parkot, T. Kashko, I. Petkovic, B. Hallstedt, S. Nemna, and J.M. Schneider, Modeling of Coating Process, Phase Changes, and Damage of Plasma Sprayed Thermal Barrier Coatings on Ni-Base Superalloys, Adv. Eng. Mater., 2010, 12, p 110-126

    Article  Google Scholar 

  12. M. Bialas, Finite Element Analysis of Stress Distribution in Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202, p 6002-6010

    Article  Google Scholar 

  13. H. Brodin, R. Eriksson, and S. Johansson, Fracture Mechanical Modelling of a Plasma Sprayed TBC System, Adv. Ceram. Coat. Interfaces IV, 2010, p 113-124

  14. E.P. Busso, Z.Q. Qian, M.P. Taylor, and H.E. Evans, The Influence of Bondcoat and Topcoat Mechanical Properties on Stress Development in Thermal Barrier Coating Systems, Acta Mater., 2009, 57, p 2349-2361

    Article  Google Scholar 

  15. A. Casu, J.L. Marqués, R. Vassen, and D. Stöver, Modelling of Crack Growth Near the Metallic-Ceramic Interface during Thermal Cycling of Air Plasma Sprayed Thermal Barrier Coatings, Key Eng. Mater., 2007, 333, p 263-268

    Article  Google Scholar 

  16. M.Y. He, J.W. Hutchinson, and A.G. Evans, Simulation of Stresses and Delamination in a Plasma-Sprayed Thermal Barrier System Upon Thermal Cycling, Mater. Sci. Eng. A., 2003, 345, p 172-178

    Article  Google Scholar 

  17. U. Hermosilla, M.S.A. Karunaratne, I.A. Jones, T.H. Hyde, and R.C. Thomson, Modelling the High Temperature Behaviour of TBCs Using Sequentially Coupled Microstructural-Mechanical FE Analyses, Mater. Sci. Eng. A., 2009, 513-514, p 302-310

    Article  Google Scholar 

  18. R. Herzog, N. Warnken, I. Steinbach, B. Hallstedt, C. Walter, J. Müller, D. Hajas, E. Münstermann, J.M. Schneider, R. Nickel, D. Parkot, K. Bobzin, E. Lugscheider, P. Bednarz, O. Trunova, and L. Singheiser, Integrated Approach for the Development of Advanced, Coated Gas Turbine Blades, Adv. Eng. Mater., 2006, 8, p 535-562

    Article  Google Scholar 

  19. M. Jinnestrand and H. Brodin, Crack Initiation and Propagation in Air Plasma Sprayed Thermal Barrier Coatings, Testing and Mathematical Modelling of Low Cycle Fatigue Behaviour, Mater. Sci. Eng. A., 2004, 379, p 45-57

    Article  Google Scholar 

  20. A.M. Karlsson, Modelling Failures of Thermal Barrier Coatings, Key Eng. Mater., 2007, 333, p 155-166

    Article  Google Scholar 

  21. Y. Liu, C. Persson, S. Melin, and J. Wigren, Long Crack Behavior in a Thermal Barrier Coating Upon Thermal Shock Loading, J. Therm. Spray Technol., 2005, 14, p 258-263

    Article  Google Scholar 

  22. M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, and C. Badini, Modelling of TBC System Failure: Stress Distribution as a Function of TGO Thickness and Thermal Expansion Mismatch, Eng. Fail. Anal., 2006, 13, p 409-426

    Article  Google Scholar 

  23. M. Pindera, J. Aboudi, and S.M. Arnold, The Effect of Interface Roughness and Oxide Film Thickness on the Inelastic Response of Thermal Barrier Coatings to Thermal Cycling, Mater. Sci. Eng. A., 2000, 284, p 158-175

    Article  Google Scholar 

  24. M. Ranjbar-Far, J. Absi, G. Mariaux, and F. Dubois, Simulation of the Effect of Material Properties and Interface Roughness on the Stress Distribution in Thermal Barrier Coatings Using Finite Element Method, Mater. Des., 2010, 31, p 772-781

    Article  Google Scholar 

  25. B.J. Rösler, Mechanical Integrity of Thermal Barrier Coated Material Systems, Adv. Eng. Mater., 2005, 7, p 50-54

    Article  Google Scholar 

  26. K. Sfar, J. Aktaa, and D. Munz, Numerical Investigation of Residual Stress Fields and Crack Behavior in TBC Systems, Mater. Sci. Eng. A., 2002, 333, p 351-360

    Article  Google Scholar 

  27. F. Traeger, M. Ahrens, R. Vaßen, and D. Sto, A Life Time Model for Ceramic Thermal Barrier Coatings, Mater. Sci. Eng. A., 2003, 358, p 255-265

    Article  Google Scholar 

  28. R. Vaßen, G. Kerkhoff, and D. Sto, Development of a Micromechanical Life Prediction Model for Plasma Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A., 2001, 303, p 100-109

    Article  Google Scholar 

  29. X.C. Zhang, B.S. Xu, H.D. Wang, and Y.X. Wu, Effects of Oxide Thickness, Al2O3 Interlayer and Interface Asperity on Residual Stresses in Thermal Barrier Coatings, Mater. Des., 2006, 27, p 989-996

    Article  Google Scholar 

  30. P. Bednarz, Finite Element Simulation of Stress Evolution in Thermal Barrier Coating Systems, Hochschule Aachen, Aachen, 2006

    Google Scholar 

  31. R. Eriksson, S. Sjöström, H. Brodin, S. Johansson, L. Östergren, and X.-H. Li, TBC Bond Coat-Top Coat Interface Roughness: Influence on Fatigue Life and Modelling Aspects, Surf. Coat. Technol., 2013, 236, p 230-238

    Article  Google Scholar 

  32. W.R. Chen, X. Wu, B.R. Marple, and P.C. Patnaik, The Growth and Influence of Thermally Grown Oxide in a Thermal Barrier Coating, Surf. Coat. Technol., 2006, 201, p 1074-1079

    Article  Google Scholar 

  33. W.R. Chen, X. Wu, B.R. Marple, and P.C. Patnaik, Oxidation and Crack Nucleation/Growth in an Air-Plasma-Sprayed Thermal Barrier Coating with NiCrAlY Bond Coat, Surf. Coat. Technol., 2005, 197, p 109-115

    Article  Google Scholar 

  34. W.R. Chen, X. Wu, B.R. Marple, D.R. Nagy, and P.C. Patnaik, TGO Growth Behaviour in TBCs with APS and HVOF Bond Coats, Surf. Coat. Technol., 2008, 202, p 2677-2683

    Article  Google Scholar 

  35. R. Eriksson, H. Brodin, S. Johansson, L. Östergren, and X.-H. Li, Influence of Isothermal and Cyclic Heat Treatments on the Adhesion of Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2011, 205, p 5422-5429

    Article  Google Scholar 

  36. R. Eriksson, S. Johansson, H. Brodin, E. Broitman, L. Östergren, and X.-H. Li, Influence of Substrate Material on the Life of Atmospheric Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2013, 232, p 795-803

    Article  Google Scholar 

  37. E. Broitman, R. Becker, K. Dozaki, and L. Hultman, A Novel Oxide Characterization Method of Nickel Base Alloy 600 Used in Nuclear Plant Reactors, PRICM: 8 Pacific Rim International Congress on Advanced Materials and Processing, F. Marquis, Ed., Wiley, Hoboken, NJ, USA, 2013

  38. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3-20

    Article  Google Scholar 

  39. M. Jinnestrand and S. Sjostrom, Investigation by 3D FE Simulations of Delamination Crack Initiation in TBC Caused by Alumina Growth, Surf. Coat. Technol., 2001, 135, p 188-195

    Article  Google Scholar 

  40. N.B. Pilling and R.E. Bedworth, The Oxidation of Metals at High Temperatures, J. Inst. Met., 1923, 29, p 529-582

    Google Scholar 

  41. S.A. Langer, E.R. Fuller, and W.C. Carter, OOF: An Image-Based Finite-Element Analysis of Material Microstructures, Comput. Sci. Eng., 2001, 3, p 15-23

    Article  Google Scholar 

  42. A.C.E. Reid, S.A. Langer, R.C. Lua, V.R. Coffman, S.-I. Haan, and R.E. García, Image-Based Finite Element Mesh Construction for Material Microstructures, Comput. Mater. Sci., 2008, 43, p 989-999

    Article  Google Scholar 

  43. Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, and H. Herman, Effects of Pores and Interfaces on Effective Properties of Plasma Sprayed Zirconia Coatings, Acta Mater., 2003, 51, p 5319-5334

    Article  Google Scholar 

  44. A.D. Jadhav and N.P. Padture, Mechanical Properties of Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202, p 4976-4979

    Article  Google Scholar 

  45. F. Azarmi, T. Coyle, and J. Mostaghimi, Young’s Modulus Measurement and Study of the Relationship Between Mechanical Properties and Microstructure of Air Plasma Sprayed Alloy 625, Surf. Coat. Technol., 2009, 203, p 1045-1054

    Article  Google Scholar 

  46. M. Gupta, K. Skogsberg, and P. Nylén, Influence of Topcoat-Bondcoat Interface Roughness on Stresses and Lifetime in Thermal Barrier Coatings, J. Therm. Spray Technol., 2013, 23, p 170-181

    Article  Google Scholar 

  47. M. Gupta, N. Curry, P. Nylén, N. Markocsan, and R. Vaßen, Design of Next Generation Thermal Barrier Coatings—Experiments and Modelling, Surf. Coat. Technol., 2013, 220, p 20-26

    Article  Google Scholar 

  48. R. Vaßen, S. Giesen, and D. Stöver, Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results, J. Therm. Spray Technol., 2009, 18, p 835-845

    Article  Google Scholar 

  49. A. Petric and H. Ling, Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures, J. Am. Ceram. Soc., 2007, 90, p 1515-1520

    Article  Google Scholar 

  50. J. Robertson and M.I. Manning, Limits to Adherence of Oxide Scales, Mater. Sci. Technol., 1990, 6, p 81-91

    Article  Google Scholar 

  51. R. Peraldi, D. Monceau, and B. Pieraggi, Correlations Between Growth Kinetics and Microstructure for Scales Formed by High-Temperature Oxidation of Pure Nickel. II. Growth Kinetics, Oxid. Met., 2002, 58, p 275-295

    Article  Google Scholar 

  52. L. Wang, Y.X. Zhao, X.H. Zhong, S.Y. Tao, W. Zhang, and Y. Wang, Influence of “Island-Like” Oxides in the Bond-Coat on the Stress and Failure Patterns of the Thermal-Barrier Coatings Fabricated by Atmospheric Plasma Spraying During Long-Term High Temperature Oxidation, J. Therm. Spray Technol., 2014, 23, p 431-446

    Article  Google Scholar 

  53. M. Daroonparvar, M.S. Hussain, and M.A. Mat Yajid, The Role of Formation of Continues Thermally Grown Oxide Layer on the Nanostructured NiCrAlY Bond Coat During Thermal Exposure in Air, Appl. Surf. Sci., 2012, 261, p 287-297

    Article  Google Scholar 

  54. O. Trunova, P. Bednarz, R. Herzog, T. Beck, and L. Singheiser, Microstructural and Acoustic Damage Analysis and Finite Element Stress Simulation of Air Plasma-Sprayed Thermal Barrier Coatings under Thermal Cycling, Int. J. Mater. Res., 2008, 99, p 1129-1135

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Kjell Niklasson at University West for the fruitful discussions and useful suggestions during the modeling work. The authors acknowledge VINNOVA in Sweden for research funding. Esteban Broitman acknowledges the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU # 2009-00971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Eriksson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eriksson, R., Gupta, M., Broitman, E. et al. Stresses and Cracking During Chromia-Spinel-NiO Cluster Formation in TBC Systems. J Therm Spray Tech 24, 1002–1014 (2015). https://doi.org/10.1007/s11666-015-0270-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0270-y

Keywords

Navigation