Skip to main content
Log in

Influence of Alumina Addition to Aluminum Fins for Compact Heat Exchangers Produced by Cold Spray Additive Manufacturing

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this work, aluminum and aluminum-alumina powder mixtures were used to produce pyramidal fin arrays on aluminum substrates using cold spray as an additive manufacturing process. Using aluminum-alumina mixtures instead of pure aluminum powder could be seen as a cost-effective measure, preventing nozzle clogging or the need to use expensive polymer nozzles that wear out rapidly during cold spray. The fin geometries that were produced were observed using a 3D digital microscope to determine the flow passages width and fins' geometric details. Heat transfer and pressure drop tests were carried out using different ranges of appropriate Reynolds numbers for the sought commercial application to compare each fin array and determine the effect of alumina content. It was found that the presence of alumina reduces the fins’ performance when compared to pure aluminum fins but that they were still outperforming traditional fins. Numerical simulations were performed to model the fin arrays and were used to predict the pressure loss in the fin array and compare these results with experimental values. The numerical model opens up new avenues in predicting different applicable operating conditions and other possible fin shapes using the same fin composition, instead of performing costly and time-consuming experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\Delta P_{\text{fin}}\) :

Fin differential pressure (Pa)

\(\Delta T_{1}\) :

Inlet temperature difference (K)

\(\Delta T_{2}\) :

Outlet temperature difference (K)

\(\Delta T_{\text{lm}}\) :

Log mean temperature difference (K)

\(\eta\) :

Fan efficiency

\(\eta_{\text{f}}\) :

Individual fin efficiency

\(\eta_{\text{o}}\) :

Overall fin efficiency

\(\theta\) :

Pyramid angle (°)

\(\mu\) :

Dynamic viscosity (Pa·s)

\(\rho\) :

Fluid density [kg/m3)

\(A_{\text{f}}\) :

Fin heat transfer area (m2)

\(A_{\text{flow}}\) :

Net flow area (m2)

\(A_{\text{tot}}\) :

Total heat transfer area (m2)

\(B\) :

Base fin length (m)

\(C_{\text{p}}\) :

Fluid specific heat capacity [kJ/(kg·K)]

\(d_{\text{h}}\) :

Hydraulic diameter (m)

\(e_{\text{v}}\) :

Pumping power per unit volume (kW/m3)

\({\text{FD}}\) :

Fin density (fin/m)

\(H\) :

Fin height (m)

\(h\) :

Convection heat transfer coefficient [W/(m2·K)]

\(I_{1}\) :

Bessel function of order one

\(I_{2}\) :

Bessel function of order two

\(k_{\text{m}}\) :

Fin material thermal conductivity (W/(m·K))

\(\dot{m}\) :

Mass flow rate (kg/s)

\(m\) :

Fin heat transfer parameter (m−1)

\(P_{\text{flow}}\) :

Flow perimeter (m)

\(q\) :

Heat flux (W/m2)

\({\text{Re}}_{\text{Dh}}\) :

Reynolds number based on hydraulic diameter

\(R_{\text{eq}}\) :

Equivalent thermal resistance (K/W)

\(S\) :

Space between fin edges (m)

\(T_{\text{in}}\) :

Inlet fluid temperature (K)

\(T_{\text{out}}\) :

Outlet fluid temperature (K)

\({\text{UA}}\) :

Thermal conductance (W/K)

\({\text{UA}}_{\text{V}}\) :

Thermal conductance per unit volume [kW/(m3·K)]

\(V\) :

Volume (m3)

\(\dot{V}_{\text{f}}\) :

Volumetric flow rate (m3/s)

\(W\) :

Channel width (m)

References

  1. D. Reay, C. Ramshaw, and A. Harvey, Chapter 4 - Compact and Micro-heat Exchangers, Process Intensification, 2nd ed., D. Reay, C. Ramshaw, and A. Harvey, Ed., Butterworth-Heinemann, Oxford, 2013, p 91-120

    Chapter  Google Scholar 

  2. F.P. Incropera, A.S. Lavine, and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed., Wiley, New York, 2011

    Google Scholar 

  3. S. Kakaç, H. Liu, and A. Pramuanjaroenkij, Heat Exchangers: Selection, Rating, and Thermal Design, 3rd ed., CRC Press, Boca Raton, 2012

    Google Scholar 

  4. J.E. Hesselgreaves, Compact Heat Exchangers: Selection, Gulf Professional Publishing, Design and Operation, 2001

    Google Scholar 

  5. S. Mahjoob and K. Vafai, A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers, Int. J. Heat Mass Transf., 2008, 51(15-16), p 3701-3711

    Article  Google Scholar 

  6. L. Tianjian, Ultralight Porous Metals: From Fundamentals to Applications, Acta Mech Sin., 2002, 18(5), p 457-479

    Article  Google Scholar 

  7. H.R.S. Jazi, J. Mostaghimi, S. Chandra, L. Pershin, and T. Coyle, Spray-Formed, Metal-Foam Heat Exchangers for High Temperature Applications, J. Therm. Sci. Eng. Appl., 2010, 1(3), p 031008-031008

    Article  Google Scholar 

  8. F. Azarmi, T. Coyle, and J. Mostaghimi, Young’s Modulus Measurement and Study of the Relationship Between Mechanical Properties and Microstructure of Air Plasma Sprayed Alloy 625, Surf. Coat. Technol., 2009, 203(8), p 1045-1054

    Article  Google Scholar 

  9. M. Taheri, S. Chandra, and J. Mostaghimi, Analytical and Numerical Modeling of Conductive and Convective Heat Transfer Through Open-Cell Metal Foams, July 8, 2012 (USA), Heat Transfer Division, p 1013-1021

  10. F. Azarmi, T. Coyle, J. Mostaghimi, and L. Pershin, A New Approach to Develop High Temperature Foam Core Sandwich Structures Using Air Plasma Spraying, Int. J. Adv. Manuf. Technol., 2009, 44(9-10), p 900-905

    Article  Google Scholar 

  11. S. Salavati, L. Pershin, T.W. Coyle, and J. Mostaghimi, Effect of Porosity Content of Arc-Sprayed Alloy 625 Skins on the Flexural Behavior of Nickel Foam Core Sandwich Structures, J. Therm. Spray Technol., 2014, 24(1), p 215-221

    Google Scholar 

  12. R.L. Shaner, Heat Exchanger Having Metal Wire Screens, and Method of Making Stack of Screens Therefor, US4840228, Year of Priority (Issued): 1985(1989)

  13. J. Chisholm, Method of Making a Crimped Wire Mesh Heat Exchanger/Sink, US4843693 A, 1989

  14. J. Assaad, A. Corbeil, P.F. Richer, and B. Jodoin, Novel Stacked Wire Mesh Compact Heat Exchangers Produced Using Cold Spray, J. Therm. Spray Technol., 2011, 20(6), p 1192-1200

    Article  Google Scholar 

  15. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V.M. Fomin, Cold Spray Technology, Elsevier, New York, 2006

    Google Scholar 

  16. M.P. Dewar, A.G. McDonald, and A.P. Gerlich, Interfacial Heating During Low-Pressure Cold-Gas dynamic Spraying of Aluminum Coatings, J. Mater. Sci., 2012, 47(1), p 184-198

    Article  Google Scholar 

  17. M.R. Rokni, C.A. Widener, and V.R. Champagne, Microstructural Evolution of 6061 Aluminum Gas-Atomized Powder and High-Pressure Cold-Sprayed Deposition, J. Therm. Spray Technol., 2014, 23(3), p 514-524

    Article  Google Scholar 

  18. S.H. Zahiri, W. Yang, and M. Jahedi, Characterization of Cold Spray Titanium Supersonic Jet, J. Therm. Spray Technol., 2009, 18(1), p 110-117

    Article  Google Scholar 

  19. H. Lee, Compact Heat Exchangers, Thermal Design, Wiley, New York, 2010, p 240-381

    Google Scholar 

  20. J. Xu, J. Tian, T.J. Lu, and H.P. Hodson, On the Thermal Performance of Wire-Screen Meshes as Heat Exchanger Material, Int. J. Heat Mass Transf., 2007, 50(5-6), p 1141-1154

    Article  Google Scholar 

  21. A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, and H.N.G. Wadley, The Topological Design of Multifunctional Cellular Metals, Prog. Mater. Sci., 2001, 46(3-4), p 309-327

    Article  Google Scholar 

  22. S.C. Costa, H. Barrutia, J.A. Esnaola, and M. Tutar, Numerical Study of the Pressure Drop Phenomena in Wound Woven Wire Matrix of a Stirling Regenerator, Energy Convers. Manag., 2013, 67, p 57-65

    Article  Google Scholar 

  23. J.C. Armour and J.N. Cannon, Fluid Flow Through Woven Screens, AIChE J., 1968, 14(3), p 415-420

    Article  Google Scholar 

  24. V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Elsevier, New York, 2007

    Book  Google Scholar 

  25. J.R. Davis, Ed., Handbook of Thermal Spray Technology, ASM International, Materials Park, 2004

    Google Scholar 

  26. P. Cavaliere, A. Perrone, and A. Silvello, Mechanical and Microstructural Behavior of Nanocomposites Produced Via Cold Spray, Compos. Part B Eng., 2014, 67, p 326-331

    Article  Google Scholar 

  27. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals, Springer, Boston, MA, 2014

    Book  Google Scholar 

  28. S. Grigoriev, A. Okunkova, A. Sova, P. Bertrand, and I. Smurov, Cold spraying: From Process Fundamentals Towards Advanced Applications, Surf. Coat. Technol., 2015, 268, p 77-84

    Article  Google Scholar 

  29. K.J. Hodder, J.A. Nychka, and A.G. McDonald, Comparison of 10 μm and 20 nm Al-Al2O3 Metal Matrix Composite Coatings Fabricated by Low-Pressure Cold Gas Dynamic Spraying, J. Therm. Spray Technol., 2014, 23(5), p 839-848

    Article  Google Scholar 

  30. J. Tian, T. Kim, T.J. Lu, H.P. Hodson, D.T. Queheillalt, D.J. Sypeck, and H.N.G. Wadley, The Effects of Topology Upon Fluid-Flow and Heat-Transfer Within Cellular Copper Structures, Int. J. Heat Mass Transf., 2004, 47(14-16), p 3171-3186

    Article  Google Scholar 

  31. P. Dupuis, Y. Cormier, A. Farjam, B. Jodoin, and A. Corbeil, Performance Evaluation of Near-Net pyramidal Shaped Fin Arrays Manufactured by Cold Spray, Int. J. Heat Mass Transf., 2014, 69, p 34-43

    Article  Google Scholar 

  32. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray, J. Therm. Spray Technol., 2013, 22(7), p 1210-1221

    Article  Google Scholar 

  33. Y. Tao, T. Xiong, C. Sun, L. Kong, X. Cui, T. Li, and G.-L. Song, Microstructure and Corrosion Performance of a Cold Sprayed Aluminium Coating on AZ91D Magnesium Alloy, Corros. Sci., 2010, 52(10), p 3191-3197

    Article  Google Scholar 

  34. A.O. Tokarev, Structure of Aluminum Powder Coatings Prepared by Cold Gas Dynamic Spraying, Met. Sci. Heat Treat., 1996, 38(3), p 136-139

    Article  Google Scholar 

  35. H.Y. Lee, S.H. Jung, S.Y. Lee, Y.H. You, and K.H. Ko, Correlation Between Al2O3 Particles and Interface of Al-Al2O3 Coatings by Cold Spray, Appl. Surf. Sci., 2005, 252(5), p 1891-1898

    Article  Google Scholar 

  36. Q. Wang, K. Spencer, N. Birbilis, and M.-X. Zhang, The Influence of Ceramic Particles on Bond Strength of Cold Spray Composite Coatings on AZ91 Alloy Substrate, Surf. Coat. Technol., 2010, 205(1), p 50-56

    Article  Google Scholar 

  37. P. Cavaliere, A. Perrone, and A. Silvello, Processing Conditions Affecting Grain Size and Mechanical Properties in Nanocomposites Produced via Cold Spray, J. Therm. Spray Technol., 2014, 23, p 1089-1096

    Article  Google Scholar 

  38. Z. Cai, S. Deng, H. Liao, C. Zeng, and G. Montavon, The Effect of Spray Distance and Scanning Step on the Coating Thickness Uniformity in Cold Spray Process, J. Therm. Spray Technol., 2014, 23(3), p 354-362

    Article  Google Scholar 

  39. A. Sova, M. Doubenskaia, S. Grigoriev, A. Okunkova, and I. Smurov, Parameters of the Gas-Powder Supersonic Jet in Cold Spraying Using a Mask, J. Therm. Spray Technol., 2013, 22(4), p 551-556

    Article  Google Scholar 

  40. H. Singh, T.S. Sidhu, S.B.S. Kalsi, and J. Karthikeyan, Development of Cold Spray from Innovation to Emerging Future Coating Technology, J. Braz. Soc. Mech. Sci. Eng., 2013, 35(3), p 231-245

    Article  Google Scholar 

  41. E. Irissou, J.-G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16(5-6), p 661-668

    Article  Google Scholar 

  42. H. Koivuluoto and P. Vuoristo, Effect of Ceramic Particles on Properties of Cold-Sprayed Ni − 20Cr + Al2O3 Coatings, J. Therm. Spray Technol., 2009, 18(4), p 555-562

    Article  Google Scholar 

  43. N. Sahiti, F. Durst, and A. Dewan, Strategy for Selection of Elements for Heat Transfer Enhancement, Int. J. Heat Mass Transf., 2006, 49(19-20), p 3392-3400

    Article  Google Scholar 

  44. F. Menter, Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows, 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, 0 vols., American Institute of Aeronautics and Astronautics, 1993

  45. R.B. Heimann, M. Shagalov, J.I. Kleiman, and E. Litovsky, Measurement of the Thermal Conductivity of Cold Gas Dynamically Sprayed Alumina-Reinforced Aluminum Coatings Between − 150 °C and + 200 °C. New Test Method and Experimental Results, Surf. Coat. Technol., 2014, 242, p 141-145

    Article  Google Scholar 

  46. Y. Cormier, P. Dupuis, A. Corbeil, and B. Jodoin, Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing, J. Therm. Spray Technol., In press. doi:10.1007/s11666-015-0267-6

  47. A.K. Saha and S. Acharya, Unsteady Simulation of Turbulent Flow and Heat Transfer in a Channel with Periodic Array of Cubic Pin-Fins, Numer. Heat Transf. Part Appl., 2004, 46(8), p 731-763

    Article  Google Scholar 

  48. A. Žukauskas, Heat Transfer of Finned Tube Bundles in Crossflow, 1988

Download references

Acknowledgments

The authors thank the MITACS accelerate program for its financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aslan Farjam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farjam, A., Cormier, Y., Dupuis, P. et al. Influence of Alumina Addition to Aluminum Fins for Compact Heat Exchangers Produced by Cold Spray Additive Manufacturing. J Therm Spray Tech 24, 1256–1268 (2015). https://doi.org/10.1007/s11666-015-0305-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0305-4

Keywords

Navigation