Skip to main content
Log in

Finite Element Analysis and Failure Mode Characterization of Pyramidal Fin Arrays Produced by Masked Cold Gas Dynamic Spray

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This work evaluates the shear strength of pyramidal fin arrays made from various feedstock materials (cylindrical aluminum, spherical nickel, and cylindrical stainless steel 304 powders) deposited on an Al6061-T6 substrate. Higher shear strength was measured for the nickel fin array followed by the stainless steel 304 and the aluminum arrays. Different failure modes were observed by inspecting the fracture surfaces under Scanning Electron Microscope. Deposition between the cold sprayed nickel and stainless fins was detected whereas dimples were noticed on the substrate between the fins when aluminum is used as the feedstock material. A numerical simulation of normal and angled impacts using the high strain rate Preston-Tonks-Wallace model was carried out in order to have a better understanding of the experimental results. The equivalent plastic strain (PEEQ) obtained from the finite element analysis at normal impact correlates with the different shear strengths measured experimentally. Furthermore, even if a higher PEEQ was observed for angled impacts compared to its normal collision counterpart, it is suggested that the particles may not bond because of the rotational restitution momentum caused by the tangential friction generated during angled impacts. This rotational restitution momentum was not detected for particle impacts normal to the substrate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394

    Article  Google Scholar 

  2. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219, p 211-227

    Article  Google Scholar 

  3. W.-Y. Li, H. Liao, C.-J. Li, H.-S. Bang, and C. Coddet, Numerical Simulation of Deformation Behavior of Al Particles Impacting on Al Substrate and Effect of Surface Oxide Films on Interfacial Bonding in Cold Spraying, Appl. Surf. Sci., 2006, 253, p 5084-5091

    Article  Google Scholar 

  4. T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379

    Article  Google Scholar 

  5. D. Zhang, P.H. Shipway, and D.G. McCartney, Cold Gas Dynamic Spraying of Aluminum: The Role of Substrate Characteristics in Deposit Formation, J. Therm. Spray Technol., 2005, 14(1), p 109-116

    Article  Google Scholar 

  6. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25, p 681-688

    Article  Google Scholar 

  7. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Spraying Coatings, Acta Mater., 2008, 56(17), p 4858-4868

    Article  Google Scholar 

  8. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Depositon, Acta Mater., 2006, 54, p 729-742

    Article  Google Scholar 

  9. G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.-J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57, p 5654-5666

    Article  Google Scholar 

  10. P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol., 2010, 19(3), p 620-634

    Article  Google Scholar 

  11. V. Lemiale, P.C. King, M. Rudman, M. Prakash, P.W. Cleary, M.Z. Jahedi, and S. Gulizia, Temperature and Strain Rate Effects in Cold Spray Investigated by Smoothed Particle Hydrodynamics, Surf. Coat. Technol., 2014, 254, p 121-130

    Article  Google Scholar 

  12. D. Giraud, Study of the Mechanical and Metallurgical Contributions to Coating-substrate Bonding in Cold Spray for “Aluminium/Polyamide 66” and “Titanium/Ti-6Al-4 V”, Ph.D. Thesis, Paris Institute of Technology, 2014

  13. D.L. Preston, D.L. Tonks, and D.C. Wallace, Model of Plastic Deformation for Extreme Loading Conditions, J. Appl. Phys., 2003, 93(1), p 211-220

    Article  Google Scholar 

  14. S. Rahmati and A. Ghaei, The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process, J. Therm. Spray Technol., 2014, 23(3), p 530-540

    Article  Google Scholar 

  15. C.Y. Gao and L.C. Zhang, Constitutive Modelling of Plasticity of fcc Metals Under Extremely High Strain Rates, Int. J. Plast., 2012, 32-33, p 121-133

    Article  Google Scholar 

  16. J.-B. Kim and H. Shin, Comparison of Plasticity Models for Tantalum and a Modification of the PTW Model for Wide Ranges of Strain, Strain Rate, and Temperature, Int. J. Impact Eng., 2009, 36(5), p 746-753

    Article  Google Scholar 

  17. R. Liang and A.S. Khan, A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures, Int. J. Plast., 1999, 15, p 963-980

    Article  Google Scholar 

  18. P.C. King, S.H. Zahiri, and M. Jahedi, Microstructural Refinement within a Cold Sprayed Copper Particle, Metall. Mater. Trans. A, 2009, 40(9), p 2115-2123

    Article  Google Scholar 

  19. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray, J. Therm. Spray Technol., 2013, 22(7), p 1210-1221

    Article  Google Scholar 

  20. A. Sova, M. Doubenskaia, S. Grigoriev, A. Okunkova, and I. Smurov, Parameters of the Gas-Powder Supersonic Jet in Cold Spraying Using a Mask, J. Therm. Spray Technol., 2013, 22(4), p 551-556

    Article  Google Scholar 

  21. V. Champagne, D. Helfritch, E. Wienhold, and J. DeHaven, The Development of Nickel-Aluminum Reactive Material by Cold Spray Process, Army Research Laboratory Technical Report ARL-TR-5189, 2010

  22. D.Y. Kim, J.J. Park, J.G. Lee, D. Kim, S.J. Tark, S. Ahn, J.H. Yun, J. Gwak, K.H. Yoon, S. Chandra, and S.S. Yoon, Cold Spray Deposition of Copper Electrodes on Silicon and Glass Substrates, J. Therm. Spray Technol., 2013, 22(7), p 1092-1102

    Article  Google Scholar 

  23. P. Dupuis, Y. Cormier, A. Farjam, B. Jodoin, and A. Corbeil, Performance Evaluation of Near-Net Pyramidal Shaped Fin Arrays Manufactured by Cold Spray, Int. J. Heat Mass Transf., 2014, 69, p 34-43

    Article  Google Scholar 

  24. Y. Cormier, P. Dupuis, A. Farjam, B. Jodoin, and A. Corbeil, Additive Manufacturing of Pyramidal Pin Fins: Height and Fin Density Effects Under Forced Convection, Int. J. Heat Mass Transf., 2014, 75, p 235-244

    Article  Google Scholar 

  25. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Mechanical Properties of Cold Gas Dynamic-Sprayed Near-Net-Shaped Fin Arrays, J. Therm. Spray Technol., 2015, 24(3), p 476-488

    Article  Google Scholar 

  26. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing, J. Therm. Spray Technol., 2015, doi:10.1007/s11666-015-0267-6

    Google Scholar 

  27. EN 15340, European Standard Method-Determination of Shear Load Resistance of Thermally Sprayed Coatings, 2007, p. A91

  28. W.-K. Li, H. Liao, C.-J. Li, G. Li, C. Coddet, and X. Wang, On High Velocity Impact of Micro-sized Metallic Particles in Cold Spray, Appl. Surf. Sci., 2006, 253, p 2852-2862

    Article  Google Scholar 

  29. F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley, New York, 2006

    Google Scholar 

  30. P. Trahan, “Corrosion Protection of Friction Stir Welded Al 7075 Panel for use in Aerospace using Cold Gas Dynamic Spray,” M.A.Sc. Thesis, University of Ottawa, 2013

  31. Dassault Systemes Simulia, ABAQUS Analysis User’s Manual, Abaqus 6.12, 2012

  32. D.J. Steinberg, “Equation of State and Strength Properties of Selected Materials, Lawrence Livermore National Laboratory,” 1996

  33. B. Banerjee, “An Evaluation of Plastic Flow Stress Models for the Simulation of High-Temperature and High Strain-rate Deformation of Metals, Cornell University Library,” 2005, p 1-43

  34. M. Fugate, B. Williams, D. Higdon, K.M. Hanson, J. Gattiker, S. Chen, and C. Unal, Hierarchical Bayesian Analysis and the Preston-Tonks-Wallace Model, Los Alamos National Laboratory Technical Report LA-UR-05-3935, 2005

  35. B. Banerjee and A.S. Bhawalkar, An Extended Mechanical Threshold Stress Plasticity Model: Modeling 6061-T6 Aluminum Alloy, J. Mech. Mater. Struct., 2008, 3(3), p 391-424

    Article  Google Scholar 

  36. H.N. Jarmakani, “Quasi-Isentropic and Shock Compression of FCC and BCC Metals: Effects of Grain Size and Stacking-Fault Energy,” Ph.D. Thesis, University of California, 2008

  37. R.A. Austin and D.L. McDowell, Parameterization of a Rate-Dependent Model of Shock-Induced Plasticity for Copper, Nickel and Aluminum, Int. J. Plast., 2012, 32-33, p 134-154

    Article  Google Scholar 

  38. P.S. Follansbee, Fundamentals of Strength: Principles, Experiment, and Applications of an Internal State Variable Constitutive Formulation, 1st ed., Wiley, New York, 2014

    Book  Google Scholar 

  39. B. Banerjee, The Mechanical Threshold Stress Model for Various Tempers of AISI, 4340 Steel, Int. J. Solids Struct., 2007, 44, p 834-859

    Article  Google Scholar 

  40. S.R. Chen, M.G. Stout, U.F. Kocks, S.R. MacEwen, and A.J. Beaudoin, Constitutive Modeling of a 5182 Aluminum as a Function of Strain Rate and Temperature, Int. J. Solids Struct., 2007, 44, p 834-859

    Article  Google Scholar 

  41. M.L. Newman, B.J. Robinson, H. Sehitoglu, and J.A. Dantzig, Deformation, Residual Stress, and Constitutive Relations for Quenched W319 Aluminum, Metall. Mater. Trans. A, 2003, 34(7), p 1483-1491

    Article  Google Scholar 

  42. T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 2002, 154, p 237-252

    Article  Google Scholar 

  43. F. Meng, H. Aydin, S. Yue, and J. Song, The Effects of Contact Conditions on the Onset of Shear Instability in Cold-Spray, J. Therm. Spray Technol., 2015, 24(4), p 711-719

    Article  Google Scholar 

  44. C.-J. Li, W.-Y. Li, and H. Liao, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J. Therm. Spray Technol., 2006, 15(2), p 212-222

    Article  Google Scholar 

  45. C.J. Li, H.T. Wang, Q. Zhang, G.J. Yang, W.Y. Li, and H.L. Liao, Influence of Spray Materials and Their Surface Oxidation on the Critical Velocity in Cold Spraying, J. Therm. Spray Technol., 2009, 19(1-2), p 95-101

    Article  Google Scholar 

  46. K. Kang, S. Yoon, Y. Ji, and C. Lee, Oxidation Dependency of Critical Velocity for Aluminum Feedstock Deposition in Kinetic Spraying Process, Mater. Sci. Eng. A, 2008, 486(1-2), p 300-307

    Article  Google Scholar 

  47. T. Klassen, F. Gärtner, T. Schmidt, J.O. Kliemann, K. Onizawa, K.R. Donner, H. Gutzmann, K. Binder, and H. Kreye, Basic Principles and Application Potentials of Cold Gas Spraying, Mat.-wiss. u.Werkstofftech, 2010, 41(7), p 575-584

    Article  Google Scholar 

  48. A.D. Kuritsyna, Relation Between Hardness and Resistance to Cold Welding [Antifriction Property] of Metals and Alloys, Met. Sci. Heat Treat., 1959, 1(8), p 29-32

    Article  Google Scholar 

  49. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808

    Article  Google Scholar 

  50. R. Cross, Measurements of the Horizontal Coefficient of Restitution for a Superball and a Tennis Ball, Am. J. Phys., 2002, 70(5), p 482-489

    Article  Google Scholar 

  51. H. Brody, That’s How the Ball Bounces, Phys. Teach., 1984, 22, p 494-497

    Article  Google Scholar 

Download references

Acknowledgments

Acknowledgments are due to the MITACS Accelerate program for its financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Cormier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cormier, Y., Dupuis, P., Jodoin, B. et al. Finite Element Analysis and Failure Mode Characterization of Pyramidal Fin Arrays Produced by Masked Cold Gas Dynamic Spray. J Therm Spray Tech 24, 1549–1565 (2015). https://doi.org/10.1007/s11666-015-0317-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0317-0

Keywords

Navigation