Skip to main content
Log in

A Study on Reactive Spray Deposition Technology Processing Parameters in the Context of Pt Nanoparticle Formation

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Catalytic materials are complex systems in which achieving the desired properties (i.e., activity, selectivity and stability) depends on exploiting the many degrees of freedom in surface and bulk composition, geometry, and defects. Flame aerosol synthesis is a process for producing nanoparticles with ample processing parameter space to tune the desired properties. Flame dynamics inside the reactor are determined by the input process variables such as solubility of precursor in the fuel; solvent boiling point; reactant flow rate and concentration; flow rates of air, fuel and the carrier gas; and the burner geometry. In this study, the processing parameters for reactive spray deposition technology, a flame-based synthesis method, are systematically evaluated to understand the residence times, reactant mixing, and temperature profiles of flames used in the synthesis of Pt nanoparticles. This provides a framework for further study and modeling. The flame temperature and length are also studied as a function of O2 and fuel flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.E. Pratsinis, Flame Aerosol Synthesis of Ceramic Powders, Prog. Energy Combust. Sci., 1998, 24(3), p 197-219

    Article  Google Scholar 

  2. W.Y. Teoh, R. Amal, and L. Madler, Flame Spray Pyrolysis: An Enabling Technology for Nanoparticles Design and Fabrication, Nanoscale, 2010, 2(8), p 1324-1347

    Article  Google Scholar 

  3. L. Mädler, H.K. Kammler, R. Mueller, and S.E. Pratsinis, Controlled Synthesis of Nanostructured Particles by Flame Spray Pyrolysis, J. Aerosol Sci., 2002, 33(2), p 369-389

    Article  Google Scholar 

  4. R. Strobel, A. Baiker, and S.E. Pratsinis, Aerosol Flame Synthesis of Catalysts, Adv. Powder Technol., 2006, 17(5), p 457-480

    Article  Google Scholar 

  5. R. Strobel and S.E. Pratsinis, Flame Aerosol Synthesis of Smart Nanostructured Materials, J. Mater. Chem., 2007, 17(45), p 4743-4756

    Article  Google Scholar 

  6. H.K. Kammler, L. Mädler, and S.E. Pratsinis, Flame Synthesis of Nanoparticles, Chem. Eng. Technol., 2001, 24(6), p 583-596

    Article  Google Scholar 

  7. R. Strobel and S. Pratsinis, Flame Synthesis of Supported Platinum Group Metals for Catalysis and Sensors, Platin. Met. Rev., 2009, 53(1), p 11-20

    Article  Google Scholar 

  8. M.S. Wooldridge, Gas-Phase Combustion Synthesis of Particles, Prog. Energy Combust. Sci., 1998, 24(1), p 63-87

    Article  Google Scholar 

  9. J. Roller, R. Neagu, F. Orfino, and R. Maric, Supported and Unsupported Platinum Catalysts Prepared by a One-Step Dry Deposition Method and their Oxygen Reduction Reactivity in Acidic Media, J. Mater. Sci., 2012, 47(11), p 4604-4611

    Article  Google Scholar 

  10. J.M. Roller, M.J. Arellano-Jiménez, H. Yu, R. Jain, C.B. Carter, and R. Maric, Catalyst Nanoscale Assembly from the Vapor Phase on Corrosion Resistant Supports, Electrochim. Acta, 2013, 107, p 632-655

    Article  Google Scholar 

  11. J. Roller, J. Renner, H. Yu, C. Capuano, T. Kwak, Y. Wang, C.B. Carter, K. Ayers, W.E. Mustain, and R. Maric, Flame-Based Processing as a Practical Approach for Manufacturing Hydrogen Evolution Electrodes, J. Power Sources, 2014, 271, p 366-376

    Article  Google Scholar 

  12. F.O. Ernst, R. Büchel, R. Strobel, and S.E. Pratsinis, One-Step Flame-Synthesis of Carbon-Embedded and -Supported Platinum Clusters, Chem. Mater., 2008, 20(6), p 2117-2123

    Article  Google Scholar 

  13. B. Buesser and S.E. Pratsinis, Design of Aerosol Coating Reactors: Precursor Injection, Ind. Eng. Chem. Res., 2011, 50(24), p 13831-13839

    Article  Google Scholar 

  14. B. Buesser and S.E. Pratsinis, Design of Aerosol Particle Coating: Thickness, Texture and Efficiency, Chem. Eng. Sci., 2010, 65(20), p 5471-5481

    Article  Google Scholar 

  15. B. Weidenhof, M. Reiser, K. Stöwe, W.F. Maier, M. Kim, J. Azurdia, E. Gulari, E. Seker, A. Barks, and R.M. Laine, High-Throughput Screening of Nanoparticle Catalysts made by Flame Spray Pyrolysis as Hydrocarbon/NO Oxidation Catalysts, J. Am. Chem. Soc. , 2009, 131(26), p 9207-9219

    Article  Google Scholar 

  16. G. Skandan, N. Glumac, Y. Chen, F. Cosandey, E. Heims, and B.H. Kear, Low-pressure Flame Deposition of Nanostructured Oxide Films, J. Am. Ceram. Soc., 1998, 81(10), p 2753-2756

    Article  Google Scholar 

  17. R.C. Breitkopf, J. Hwang, F. Maniei, and A. Hunt, Carbon Supported Pt Nanomaterials for Fuel Cell Applications Using Combustion Chemical Vapor Condensation, NSTI Nanotech 2003 Conference Technical Program Abstract, 2003, p 490-492

  18. A.T. Hunt, W.B. Carter, and J.K. Cochran, Combustion Chemical Vapor Deposition: A Novel Thin-Film Deposition Technique, Appl. Phys. Lett., 1993, 63(2), p 266-268

    Article  Google Scholar 

  19. I.D. Choi, H. Lee, Y. Shim, and D. Lee, A One-Step Continuous Synthesis of Carbon-Supported Pt Catalysts Using a Flame for the Preparation of the Fuel Electrode, Langmuir, 2010, 26(13), p 11212-11216

    Article  Google Scholar 

  20. A. Hunt, Microcoating Technologies Inc., Materials and Processes for Providing Fuel Cells and Active Membranes, Patent US6403245 B1, 11 June 2002

  21. A. Hunt, G. Deshpande, T.J. Hwang, M. Oljaca, S. Shanmugham, S. Shoup, et al., Chemical Vapor Deposition Methods for Making Powders and Coatings, and Coatings Made Using these Methods, Patent US20020058143 A1, 16 May 2002

  22. J.M. Roller, M.J. Arellano-Jiménez, R. Jain, H. Yu, C. Barry Carter, and R. Maric, Oxygen Evolution During Water Electrolysis from Thin Films Using Bimetallic Oxides of Ir-Pt and Ir-Ru, J. Electrochem. Soc., 2013, 160(6), p F716-F730

    Article  Google Scholar 

  23. G. Hu, R. Neagu, Q. Wang, Z. Zhang, G. Li, and Y. Zheng, Mathematical Modeling of Flow and Heat/Mass Transfer During Reactive Spraying Deposition Technology (RSDT) Process for High Temperature Fuel Cells, Eng. Appl. Comput. Fluid Mech., 2012, 6(1), p 134

    Google Scholar 

  24. V. Yang, Modeling of Supercritical Vaporization, Mixing, and Combustion Processes in Liquid-Fueled Propulsion Systems, Proc. Combust. Inst., 2000, 28(1), p 925-942

    Article  Google Scholar 

  25. I. Glassman, Combustion, Academic Press, Inc., New York, 1977

    Google Scholar 

  26. M.T. Swihart, Vapor-Phase Synthesis of Nanoparticles, Curr. Opin. Colloid Interface Sci., 2003, 8(1), p 127-133

    Article  Google Scholar 

  27. S.E. Pratsinis and S. Vemury, Particle Formation in Gases: A Review, Powder Technol., 1996, 88(3), p 267-273

    Article  Google Scholar 

  28. D.E. Rosner, Flame Synthesis of Valuable Nanoparticles: Recent Progress/Current Needs in Areas of Rate Laws, Population Dynamics, and Characterization, Ind. Eng. Chem. Res., 2005, 44(16), p 6045-6055

    Article  Google Scholar 

  29. A. Camenzind, W.R. Caseri, and S.E. Pratsinis, Flame-Made Nanoparticles for Nanocomposites, Nano Today, 2010, 5(1), p 48-65

    Article  Google Scholar 

  30. R. Mueller, H.K. Kammler, S.E. Pratsinis, A. Vital, G. Beaucage, and P. Burtscher, Non-Agglomerated Dry Silica Nanoparticles, Powder Technol., 2004, 140(1-2), p 40-48

    Article  Google Scholar 

  31. G.M. Faeth, Evaporation and Combustion of Sprays, Prog. Energy Combust. Sci., 1983, 9(1-2), p 1-76

    Article  Google Scholar 

  32. A. Duvvur, C.H. Chiang, and W.A. Sirignano, Oscillatory Fuel Droplet Vaporization—Driving Mechanism for Combustion Instability, J. Propul. Power, 1996, 12(2), p 358-365

    Article  Google Scholar 

  33. A. Lefebvre, Atomization and Sprays, Taylor & Francis Group, Boca Raton, 1989

    Google Scholar 

  34. N. Syred and J.M. Beér, Combustion in Swirling Flows: A Review, Combust. Flame, 1974, 23(2), p 143-201

    Article  Google Scholar 

  35. T. Plessing, C. Kortschik, N. Peters, M.S. Mansour, and R.K. Cheng, Measurements of the Turbulent Burning Velocity and the Structure of Premixed Flames on a Low-Swirl Burner, Proc. Combust. Inst., 2000, 28(1), p 359-366

    Article  Google Scholar 

  36. J.C. Lasheras, A. Fernandez-Pello, and F.L. Dryer, Experimental Observations on the Disruptive Combustion of Free Droplets of Multicomponent Fuels, Combust. Sci. Technol., 1980, 22(5-6), p 195-209

    Article  Google Scholar 

  37. W.Y. Teoh, A Perspective on the Flame Spray Synthesis of Photocatalyst Nanoparticles, Materials, 2013, 6(8), p 3194

    Article  Google Scholar 

  38. A.J. Gröhn, S.E. Pratsinis, A. Sänchez-Ferrer, R. Mezzenga, and K. Wegner, Scale-Up of Nanoparticle Synthesis by Flame Spray Pyrolysis: the High-Temperature Particle Residence Time, Ind. Eng. Chem. Res., 2014, 53(26), p 10734-10742

    Article  Google Scholar 

  39. W.R. Hawthorne, D.S. Weddell, and H.C. Hottel, Mixing and Combustion in Turbulent Gas Jets, Symp. Combust. Flame Explos. Phenom., 1949, 3(1), p 266-288

    Article  Google Scholar 

  40. S.J. Brookes and J.B. Moss, Predictions of Soot and Thermal Radiation Properties in Confined Turbulent Jet-Diffusion Flames, Combust. Flame, 1999, 116(4), p 486-503

    Article  Google Scholar 

  41. W.A. Sirignano, Fuel Droplet Vaporization and Spray Combustion Theory, Prog. Energy Combust. Sci., 1983, 9(4), p 291-322

    Article  Google Scholar 

  42. B. Abramzon and W.A. Sirignano, Droplet Vaporization Model for Spray Combustion Calculations, Int. J. Heat Mass Transf., 1989, 32(9), p 1605-1618

    Article  Google Scholar 

  43. A. Teleki, B. Buesser, M.C. Heine, F. Krumeich, M.K. Akhtar, and S.E. Pratsinis, Role of Gas-Aerosol Mixing During In Situ Coating of Flame-Made Titania Particles, Ind. Eng. Chem. Res., 2009, 48(1), p 85-92

    Article  Google Scholar 

  44. M.C. Heine, L. Mädler, R. Jossen, and S.E. Pratsinis, Direct Measurement of Entrainment During Nanoparticle Synthesis in Spray Flames, Combust. Flame, 2006, 144(4), p 809-820

    Article  Google Scholar 

  45. A. Gaydon, The Spectroscopy of Flames, Chapman and Hall, London, 1974

    Book  Google Scholar 

  46. S. Tsantilis, H. Briesen, and S.E. Pratsinis, Sintering Time for Silica Particle Growth, Aerosol Sci. Technol., 2001, 34(3), p 237-246

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Max Villa for assistance with photography. The research reported here was supported by the National Science Foundation on Grant NSF CMMI #1265893.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin M. Roller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roller, J.M., Maric, R. A Study on Reactive Spray Deposition Technology Processing Parameters in the Context of Pt Nanoparticle Formation. J Therm Spray Tech 24, 1529–1541 (2015). https://doi.org/10.1007/s11666-015-0322-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0322-3

Keywords

Navigation