Skip to main content
Log in

Crystallization Evolution of Cold-Sprayed Pure Ni Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold spraying is a coating technology on the basis of aerodynamics and high-speed impact dynamics. Spray particles (usually 1-50 μm in diameter) are accelerated to high velocity (typically 300-1200 m/s) by a high-speed gas (preheated air, nitrogen, or helium) flow that is generated through a convergent-divergent de Laval type nozzle. The coating forms through the intensive plastic deformation of particles impacting on the substrate at temperatures well below the melting point of the spray material. In the present paper, the main processing parameters affecting the crystallization behavior of pure Ni cold spray deposits on IN718 alloy are described. Various experimental conditions have been analyzed: gas temperature and pressure, nozzle to substrate distance. In particular, the study deals with those conditions leading to a strong grain refinement, with an acceptable level of the deposits mechanical properties. In precise spray conditions, a shift toward amorphous phases has been observed and studied. A systematic analysis of microstructural evolution, performed through TEM observations, as a function of processing parameters is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Cavaliere and A. Silvello, Mechanical and Microstructural Behavior of Cold-Sprayed Titanium- and Nickel-Based Coatings, J. Therm. Spray. Technol., 2015, 24(8), p 1506-1512

    Article  Google Scholar 

  2. P. Cavaliere and A. Silvello, Processing Conditions Affecting Residual Stresses and Fatigue Properties of Cold Spray Deposits, Int. J. Adv. Manuf. Technol., 2015, 81(9), p 1857-1862

    Article  Google Scholar 

  3. P. Cavaliere, A. Perrone, and A. Silvello, Mechanical and Microstructural Behavior of Nanocomposites Produced Via Cold Spray, Compos. Part B-Eng., 2014, 67, p 326-331

    Article  Google Scholar 

  4. P. Cavaliere, A. Perrone, and A. Silvello, Processing Conditions Affecting Grain Size and Mechanical Properties in Nanocomposites Produced Via Cold Spray, J. Therm. Spray Technol., 2014, 23(7), p 1089-1096

    Article  Google Scholar 

  5. Y. Zou, W. Quin, E. Irissou, J.G. Legoux, S. Yue, and J.A. Szpunar, Dynamic Recrystallization in the Particle/Particle Interfacial Region of Cold-Sprayed Nickel Coating: Electron Backscattered Diffraction Characterization, Scr. Mater., 2009, 61, p 899-902

    Article  Google Scholar 

  6. Y. Xiong, X. Xiong, S. Yoon, G. Bae, and C. Lee, Dependence of Bonding Mechanisms of Cold Sprayed Coatings on Strain-Rate-Induced Non-Equilibrium Phase Transformation, J. Therm. Spray Technol., 2011, 20, p 860-865

    Article  Google Scholar 

  7. V. Keryvin, V.H. Hoang, and J. Shen, Hardness, Toughness, Brittleness and Cracking Systems in an Iron-Based Bulk Metallic Glass by Indentation, Intermetallics, 2009, 17(4), p 211-217

    Article  Google Scholar 

  8. A. Inoe, B.L. Shen, and C.T. Chang, Super-High Strength of Over 4000 MPa for Fe-Based Bulk Glassy Alloys in [(Fe1-xCox)0.75B0.2Si 0.05]96Nb4 System, Acta Mater., 2004, 52, p 4093-4099

    Article  Google Scholar 

  9. S.J. Pang, T. Zhang, K. Asami, and A. Inoue, Roles of Aluminium and Chromium in Sulfidation and Oxidation of Sputter-Deposited Al- and Cr-Refractory Metal Alloys, Corros. Sci., 2002, 44, p 1847-1856

    Article  Google Scholar 

  10. A. Makino, T. Bitoh, A. Kojima, A. Inoe, and T. Masumoto, Magnetic Properties of Zero-Magnetostrictive Nanocrystalline Fe-Zr-Nb-B Soft Magnetic Alloys with High Magnetic Induction, J. Magn. Mater., 2000, 215-216, p 288-292

    Article  Google Scholar 

  11. M. Trexler and N. Thadhani, Mechanical properties of bulk metallic glasses, Progr. Mater. Sci., 2010, 55, p 759-893

    Article  Google Scholar 

  12. I. Kaban, P. Jovari, A. Waske, M. Stoica, J. Bednarcik, B. Beuneu, N. Mattern, and J. Ecker, Atomic Structure and Magnetic Properties of Fe-Nb-B Metallic Glasses, J. Alloys Comp., 2014, 586, p S189-S193

    Article  Google Scholar 

  13. W.H. Wang, C. Dong, and C.H. Shek, Bulk Metallic Glasses, Mater. Sci. Eng. R, 2004, 44, p 45-89

    Article  Google Scholar 

  14. X.-T. Luo, C.-X. Li, F.-L. Shang, G.-J. Yan, Y.-Y. Wang, and C.-J. Li, High Velocity Impact Induced Microstructure Evolution During Deposition of Cold Spray Coatings: A Review, Surf. Coat. Technol., 2014, 254, p 11-20

    Article  Google Scholar 

  15. G. Bae, J. Jang, and C. Lee, Correlation of Particle Impact Conditions with Bonding, Nanocrystal Formation and Mechanical Properties in Kinetic Sprayed Nickel, Acta Mater., 2012, 60, p 3524-3535

    Article  Google Scholar 

  16. S. Yoon, H.J. Kim, and C. Lee, Deposition Behavior of Bulk Amorphous NiTiZrSiSn According to the Kinetic and Thermal Energy Levels in the Kinetic Spraying Process, Surf. Coat. Technol., 2006, 200, p 6022-6029

    Article  Google Scholar 

  17. F. Gartner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15, p 223-232

    Article  Google Scholar 

  18. D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, E. Irissou, and J.G. Legoux, Document The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats, J. Therm. Spray Technol., 2012, 21(2), p 288-303

    Article  Google Scholar 

  19. X.K. Wu, J. Zhang, X. Zhou, H. Cui, and J. Liu, Advanced Cold Spray Technology: Deposition Characteristics and Potential Applications, Sci. China Technol. Sci., 2012, 55, p 357-368

    Article  Google Scholar 

  20. J. Koike, D.M. Parkin, and M. Nastasi, Crystal-to-Amorphous Transformation of NiTi Induced by Cold Rolling, J. Mater. Res., 1990, 5, p 1414-1418

    Article  Google Scholar 

  21. G.P. Dinda, H. Rosner, and G. Wilde, Cold-Rolling Induced Amorphization in Cu-Zr, Cu-Ti, Cu-Ti-Zr and Cu-Ti-Zr-Ni Multilayers, J. Non-Cryst. Solids, 2007, 353, p 3777-3781

    Article  Google Scholar 

  22. Y. Xiong, K. Kang, G. Bae, S. Yoon, and C. Lee, Dynamic Amorphization and Recrystallization of Metals in Kinetic Spray Process, Appl. Phys. Lett., 2008, 92, p 194101-194113

    Article  Google Scholar 

  23. H. Assadi, F. Gartner, T. Stolenhoff, H. Kreye, and K. Kang, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394

    Article  Google Scholar 

  24. H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Krey, On Parameter Selection in Cold Spraying, J. Therm. Spray. Technol., 2011, 20, p 1161-1176

    Article  Google Scholar 

  25. J. Henao, A. Concustell, I.G. Cano, N. Cinca, S. Dosta, and J.M. Guilemany, Influence of Cold Gas Spray Process Conditions on the Microstructure of Fe-Based Amorphous Coatings, J. Alloy Compd., 2015, 622, p 995-999

    Article  Google Scholar 

  26. A.L. Greer, Y.Q. Cheng, and E. Ma, Shear Bands in Metallic Glasses, Mater. Sci. Eng. R, 2013, 74(71), p 71-132

    Article  Google Scholar 

  27. P. Cavaliere and A. Silvello, Processing Parameters Affecting Cold Spay Coatings Performances, Int. J. Adv. Manuf. Technol., 2014, 71, p 263-277

    Article  Google Scholar 

  28. M. Villa, S. Dosta, J. Fernandez, and J.M. Guilemany, La proyección fría (CGs): Una alternativa a las tecnologías convencionales de deposición, Revista de Metalurgia, 2012, 48(3), p 175-191

    Article  Google Scholar 

  29. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

    Article  Google Scholar 

  30. H. Tabbara, S. Gu, and D.G. McCartney, Computational Modelling of Titanium Particles in Warm Spray, Comput. Fluids, 2011, 44, p 358-368

    Article  Google Scholar 

  31. W.Y. Li, H. Liao, C.-J. Li, G. Li, C. Coddet, and X.F. Wang, On High Velocity Impact of Micro-sized Metallic Particles in Cold Spraying, Appl. Surf. Sci., 2006, 253, p 2852-2862

    Article  Google Scholar 

  32. Y. Zou, D. Goldbaum, J.A. Szpunar, and S. Yue, Microstructure and nanohardness of cold-sprayed coatings: Electron backscattered diffraction and nanoindentation studies, Scr. Mater., 2010, 62, p 395-398

    Article  Google Scholar 

  33. D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.G. Legoux, and E. Irissou, The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats, J. Therm. Spray Technol., 2012, 21(2), p 288-303

    Article  Google Scholar 

  34. P.H. Gao, C.-J. Li, G.J. Yang, Y.G. Li, and C.X. Li, Influence of Substrate Hardness on Deposition Behavior of Single Porous WC-12Co Particle in Cold Spraying, Surf. Coat. Technol., 2008, 203, p 384-390

    Article  Google Scholar 

  35. R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Thermal. Spray Technol., 1999, 8, p 559-564

    Article  Google Scholar 

  36. J. Ajaja, D. Goldbaum, and R.R. Chromik, Characterization of Ti Cold Spray Coatings by Indentation Methods, Acta Astronaut., 2011, 69, p 923-928

    Article  Google Scholar 

  37. D. Goldbaum, J. Ajaja, R.R. Chromika, W. Wong, S. Yue, E. Irissou, and J.G. Legoux, Mechanical Behavior of Ti Cold Spray Coatings Determined by a Multi-Scale Indentation Method, Mater. Sci. Eng. A, 2011, 530, p 253-265

    Article  Google Scholar 

  38. H. Koivuluoto, A. Coleman, K. Murray, M. Kearns, and P. Vuoristo, High Pressure Cold Sprayed (HPCS) and Low Pressure Cold Sprayed (LPCS) Coatings Prepared from OFHC Cu Feedstock: Overview from Powder Characteristics to Coating Properties, J. Therm. Spray Technol., 2012, 21, p 1065-1075

    Article  Google Scholar 

  39. L. Venkatesh, N.M. Chavan, and G. Sundararajan, The Influence of Powder Particle Velocity and Microstructure on the Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Technol., 2011, 20, p 1009-1021

    Article  Google Scholar 

  40. L. Ajdelsztajn, B. Jodoin, and J.M. Schoenung, Synthesis and Mechanical Properties of Nanocrystalline Ni Coatings Produced by Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2006, 201, p 1166-1172

    Article  Google Scholar 

  41. G. Bae, K. Kang, H. Na, J.-J. Kim, and C. Lee, Effect of Particle Size on the Microstructure and Properties of Kinetic Sprayed Nickel Coatings, Surf. Coat. Technol., 2010, 204, p 3326-3335

    Article  Google Scholar 

  42. S. Yoon, C. Lee, H. Choi, H. Kim, and J. Bae, Impacting Behavior of Bulk Metallic Glass Powder at an Abnormally High Strain Rate During Kinetic Spraying, Mater. Sci. Eng. A, 2007, 449-451, p 911-915

    Article  Google Scholar 

  43. X.-T. Luo, Y.-J. Li, C.-X. Li, G.-J. Yang, and C.-J. Li, Effect of Spray Conditions on Deposition Behavior and Microstructure of Cold Sprayed Ni Coatings Sprayed with a Porous Electrolytic Ni Powder, Surf. Coat. Technol., 2016, 289, p 85-93

    Article  Google Scholar 

  44. C.-J. Li and W.Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167, p 278-283

    Article  Google Scholar 

  45. C.-J. Li, G.J. Yang, P.H. Gao, J. Ma, Y.Y. Wang, and C.X. Li, Characterization of Nanostructured WC-Co Deposited by Cold Spraying, J. Therm. Spray Technol., 2007, 16, p 1011-1020

    Article  Google Scholar 

  46. T. Suhonen, T. Varis, S. Dosta, M. Torrell, and J.M. Guilemany, Residual Stress Development in Cold Sprayed Al, Cu and Ti Coatings, Acta Mater., 2013, 61, p 6329-6337

    Article  Google Scholar 

  47. W.B. Choi, L. Li, V. Luzin, R. Neiser, T.G. Herold, H.J. Prask, S. Sampath, and A. Gouldstone, Integrated Characterization of Cold Sprayed Aluminum Coatings, Acta Mater., 2007, 55, p 857-866

    Article  Google Scholar 

  48. V. Luzin, K. Spencer, and M.X. Zhang, Residual Stress and Thermo-Mechanical Properties of Cold Spray Metal Coatings, Acta Mater., 2011, 59, p 1259-1270

    Article  Google Scholar 

  49. C. Borchers, F. Gartner, T. Stoltenhoff, and H. Kreye, Formation of Persistent Dislocation Loops by Ultra-High Strain-Rate Deformation During Cold Spraying, Acta Mater., 2005, 53, p 2991-3000

    Article  Google Scholar 

  50. E. Calla, D.G. McCartney, and P.H. Shipway, Effect of Deposition Conditions on the Properties and Annealing Behavior of Cold-Sprayed Copper, J. Therm. Spray Technol., 2006, 15, p 255-262

    Article  Google Scholar 

  51. B.B. Straumal, A.A. Mazilkin, B. Baretzky, G. Schutz, E. Rabkin, and R.Z. Valiev, Accelerated Diffusion and Phase Transformations in Co-Cu Alloys Driven by the Severe Plastic Deformation, Mater. Trans., 2012, 53, p 63-71

    Article  Google Scholar 

  52. A.A. Mazilkin, G.E. Abrosimova, S.G. Protasova, B.B. Straumal, G. Schutz, and S.V. Dobatkin, Transmission Electron Microscopy Investigation of Boundaries Between Amorphous Grains in Ni50Nb20Y30 Alloy, J. Mater. Sci., 2011, 46, p 4336-4342

    Article  Google Scholar 

  53. K. Kang, H. Park, G. Bae, and C. Lee, Microstructure and Texture of Al Coating During Kinetic Spraying and Heat Treatment, J. Mater. Sci., 2012, 47(9), p 4053-4061

    Article  Google Scholar 

  54. X.T. Luo, G.J. Yang, C.J. Li, and K. Kondoh, High Strain Rate Induced Localized Amorphization in Cubic BN/NiCrAl Nanocomposite Through High Velocity Impact, Scr. Mater., 2011, 65(7), p 581-584

    Article  Google Scholar 

  55. G. Bae, K. Kang, and C. Lee, Nanoscale Deformation Twinning at Ultrahigh Strain Rates During Kinetic Spraying of Nickel, Mater. Lett., 2012, 89, p 320-323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cavaliere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaliere, P., Perrone, A. & Silvello, A. Crystallization Evolution of Cold-Sprayed Pure Ni Coatings. J Therm Spray Tech 25, 1158–1167 (2016). https://doi.org/10.1007/s11666-016-0430-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0430-8

Keywords

Navigation