Skip to main content
Log in

Utilization of Titanium Particle Impact Location to Validate a 3D Multicomponent Model for Cold Spray Additive Manufacturing

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold spray is a solid-state rapid deposition technology in which metal powder is accelerated to supersonic speeds within a de Laval nozzle and then impacts onto the surface of a substrate. It is possible for cold spray to build thick structures, thus providing an opportunity for melt-less additive manufacturing. Image analysis of particle impact location and focused ion beam dissection of individual particles were utilized to validate a 3D multicomponent model of cold spray. Impact locations obtained using the 3D model were found to be in close agreement with the empirical data. Moreover, the 3D model revealed the particles’ velocity and temperature just before impact—parameters which are paramount for developing a full understanding of the deposition process. Further, it was found that the temperature and velocity variations in large-size particles before impact were far less than for the small-size particles. Therefore, an optimal particle temperature and velocity were identified, which gave the highest deformation after impact. The trajectory of the particles from the injection point to the moment of deposition in relation to propellant gas is visualized. This detailed information is expected to assist with the optimization of the deposition process, contributing to improved mechanical properties for additively manufactured cold spray titanium parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Cadney, M. Brochu, P. Richer, and B. Jodoin, Cold Gas Dynamic Spraying as a Method for Freeforming and Joining Materials, Surf. Coatings Technol., 2008, 202(12), p 2801-2806

    Article  Google Scholar 

  2. D. Kotoban, S. Grigoriev, A. Okunkova, and A. Sova, Influence of a Shape of Single Track on Deposition Efficiency of 316L Stainless Steel Powder in Cold Spray, Surf. Coatings Technol., 2016, 309, p 951-958

    Article  Google Scholar 

  3. R.E. Blose, B.H. Walker, R.M. Walker, and S.H. Froes, New Opportunities to Use Cold Spray Process for Applying Additive Features to Titanium Alloys, Met. Powder Rep., 2006, 61(9), p 30-37

    Article  Google Scholar 

  4. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkimov, and V. Fomin, Cold Spray Technology, 1st ed., A. Papyrin, Ed., Elsevier Ltd, New York, 2007

  5. D. Riedlbauer, T. Scharowsky, R.F. Singer, P. Steinmann, C. Körner, and J. Mergheim, Macroscopic Simulation and Experimental Measurement of Melt Pool Characteristics in Selective Electron Beam Melting of Ti-6Al-4 V, Int. J. Adv. Manuf. Technol., 2016, 88, p 1-9

    Article  Google Scholar 

  6. M. Faizan-Ur-Rab, S. H. Zahiri, S.H. Masood, M. Jahedi, and R. Nagarajah, 3D CFD Multicomponent Model for Cold Spray Additive Manufacturing of Titanium Particles, CFD Modeling and Simulation in Materials Processing 2016, John Wiley, Nashville, 2016, p 213-220.

  7. M. Rab, S. Zahiri, S. Masood, M. Jahedi, and R. Nagarajah, Development of 3D Multicomponent Model for Cold Spray Process Using Nitrogen and Air, Coatings, 2015, 5(4), p 688-708

    Article  Google Scholar 

  8. D. Goldbaum, R.R. Chromik, S. Yue, E. Irissou, and J.-G. Legoux, Mechanical Property Mapping of Cold Sprayed Ti Splats and Coatings, J. Therm. Spray Technol., 2011, 20(3), p 486-496

    Article  Google Scholar 

  9. N.A. Buchmann, C. Atkinson, and J. Soria, Ultra-High-Speed Tomographic Digital Holographic Velocimetry in Supersonic Particle-Laden Jet Flows, Meas. Sci. Technol., 2013, 24, p 24005

    Article  Google Scholar 

  10. S. Guetta, M.H. Berger, F. Borit, V. Guipont, M. Jeandin, and M. Boustie, Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats, J. Therm. Spray Technol., 2009, 18(3), p 331-342

    Article  Google Scholar 

  11. X.K. Suo, T.K. Liu, W.Y. Li, Q.L. Suo, M.P. Planche, and H.L. Liao, Numerical Study on the Effect of Nozzle Dimension on Particle Distribution in Cold Spraying, Surf. Coatings Technol., 2013, 220, p 107-111

    Article  Google Scholar 

  12. S. Yin, Q. Liu, H. Liao, and X. Wang, Effect of Injection Pressure on Particle Acceleration, Dispersion and Deposition in Cold Spray, Comput. Mater. Sci., 2014, 90, p 7-15

    Article  Google Scholar 

  13. B. Samareh and A. Dolatabadi, A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape, J. Therm. Spray Technol., 2007, 16(5-6), p 634-642

    Article  Google Scholar 

  14. M. Faizan-Ur-Rab, S.H. Zahiri, S.H. Masood, T.D. Phan, M. Jahedi, and R. Nagarajah, Application of a Holistic 3D Model to Estimate State of Cold Spray Titanium Particles, Mater. Des., 2016, 89, p 1227-1241

    Article  Google Scholar 

  15. M. Faizan-Ur-Rab, S.H. Zahiri, S.H. Masood, M. Jahedi, and R. Nagarajah, PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field, J. Therm. Spray Technol., 2017, 26(5), p 941-957

    Article  Google Scholar 

  16. W.-Y. Li, C. Zhang, C.-J. Li, and H. Liao, Modeling Aspects of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, J. Therm. Spray Technol., 2009, 18(5-6), p 921-933

    Article  Google Scholar 

  17. W.-Y. Li and W. Gao, Some Aspects on 3D Numerical Modeling of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, Appl. Surf. Sci., 2009, 255(18), p 7878-7892

    Article  Google Scholar 

  18. W.-Y. Li, H. Liao, C.-J. Li, H.-S. Bang, and C. Coddet, Numerical Simulation of Deformation Behavior of Al Particles Impacting on Al Substrate and Effect of Surface Oxide Films on Interfacial Bonding in Cold Spraying, Appl. Surf. Sci., 2007, 253(11), p 5084-5091

    Article  Google Scholar 

  19. P.C. King, C. Busch, T. Kittel-Sherri, M. Jahedi, and S. Gulizia, Interface Melding in Cold Spray Titanium Particle Impact, Surf. Coatings Technol., 2014, 239, p 191-199

    Article  Google Scholar 

  20. H. Schlighting, Boundary Layer Theory, McGraw Hill, New York, 1979

    Google Scholar 

  21. B.E. Poling, J.M. Prausnitz, and J.P. O’Connell, The Properties of Gases and Liquids, McGraw Hill, New York, 2001

    Google Scholar 

  22. M. Karimi, A. Fartaj, G. Rankin, D. Vanderzwet, W. Birtch, and J. Villafuerte, Numerical Simulation of the Cold Gas Dynamic Spray Process, J. Therm. Spray Technol., 2006, 15(4), p 518-523

    Article  Google Scholar 

  23. A. Kumar, S. Ghosh, and B.K. Dhindaw, Simulation of Cooling of Liquid Al–33wt.% Cu Droplet Impinging on a Metallic Substrate and Its Experimental Validation, Acta Mater., 2010, 58(1), p 122-133

    Article  Google Scholar 

  24. S.H. Zahiri, T.D. Phan, S.H. Masood, and M. Jahedi, Development of Holistic Three-Dimensional Models for Cold Spray Supersonic Jet, J. Therm. Spray Technol., 2014, 23(6), p 919-933

    Article  Google Scholar 

  25. D.K. Christoulis, S. Guetta, V. Guipont, and M. Jeandin, The Influence of the Substrate on the Deposition of Cold-Sprayed Titanium: An Experimental and Numerical Study, J. Therm. Spray Technol., 2011, 20(3), p 523-533

    Article  Google Scholar 

  26. P.R. Spalart, Strategies for Turbulence Modelling and Simulations, Heat Fluid Flow, 2000, 21, p 252-263

    Article  Google Scholar 

  27. H. Grotjans and F. Menter, Wall Functions for General Application {CFD} Codes., 1998

  28. D.C. Wilcox, Turbulence Modeling for CFD, 3rd ed., DCW Industries, La Canada Flintridge p, 2000, p 91011

    Google Scholar 

  29. M. Karimi, G.W. Rankin, and B. Jodoin, Shock-Wave Induced Spraying: Gas and Particle Flow and Coating Analysis, Surf. Coatings Technol., 2012, 207, p 435-442

    Article  Google Scholar 

  30. M. Meyer and R. Lupoi, An Analysis of the Particulate Flow in Cold Spray Nozzles, Mech. Sci, 2015, 6, p 127-136

    Article  Google Scholar 

  31. D.-M. Chun, J.-O. Choi, C.S. Lee, and S.-H. Ahn, Effect of Stand-off Distance for Cold Gas Spraying of Fine Ceramic Particles, Surf. Coatings Technol., 2012, 206(8), p 2125-2132

    Article  Google Scholar 

  32. R. Lupoi and W. O’Neill, Powder Stream Characteristics in Cold Spray Nozzles, Surf. Coat. Technol., 2011, 206, p 1069-1076

    Article  Google Scholar 

  33. P.C. King and M. Jahedi, Relationship Between Particle Size and Deformation in the Cold Spray Process, Appl. Surf. Sci., 2010, 256(6), p 1735-1738

    Article  Google Scholar 

  34. S.H. Zahiri, C.I. Antonio, and M. Jahedi, Elimination of Porosity in Directly Fabricated Titanium via Cold Gas Dynamic Spraying, J. Mater. Process. Technol., 2009, 209(2), p 922-929

    Article  Google Scholar 

  35. P.C. King, S.H. Zahiri, and M. Jahedi, Focused Ion Beam Micro-Dissection of Cold-Sprayed Particles, Acta Mater., 2008, 56(19), p 5617-5626

    Article  Google Scholar 

  36. W. Wong, P. Vo, E. Irissou, A.N. Ryabinin, J.-G. Legoux, and S. Yue, Effect of Particle Morphology and Size Distribution on Cold-Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2013, 22(7), p 1140-1153

    Article  Google Scholar 

  37. T. Van Steenkiste, J. Smith, R. Teets, J. Moleski, D. Gorkiewicz, R. Tison, D. Marantz, K. Kowalsky, W. Riggs, P. Zajchowski, B. Pilsner, R. McCune, and K. Barnett, Kinetic Spray Coatings, Surf. Coatings Technol., 1999, 111, p 62-71

    Article  Google Scholar 

  38. T. Van Steenkiste and J.R. Smith, Evaluation of Coatings Produced via Kinetic and Cold Spray Processes, J. Therm. Spray Technol., 2004, 13(2), p 274-282

    Article  Google Scholar 

  39. T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coatings Technol., 2002, 154, p 252-273

    Google Scholar 

  40. P. Cavaliere, A. Perrone, and A. Silvello, Mechanical and Microstructural Behavior of Nanocomposites Produced via Cold Spray, Compos. PART B, 2014, 67, p 326-331

    Article  Google Scholar 

  41. P.C. King, S.H. Zahiri, and M. Jahedi, Microstructural Refinement within a Cold-Sprayed Copper Particle, Metall. Mater. Trans. A, 2009, 40(9), p 2115-2123

    Article  Google Scholar 

  42. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582

    Article  Google Scholar 

  43. H. Tabbara, S. Gu, D.G. McCartney, T.S. Price, and P.H. Shipway, Study on Process Optimization of Cold Gas Spraying, J. Therm. Spray Technol., 2011, 20(3), p 608-620

    Article  Google Scholar 

Download references

Acknowledgments

This experimental work was performed in part at the Melbourne Center for Nanofabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Faizan-Ur-Rab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faizan-Ur-Rab, M., Zahiri, S.H., King, P.C. et al. Utilization of Titanium Particle Impact Location to Validate a 3D Multicomponent Model for Cold Spray Additive Manufacturing. J Therm Spray Tech 26, 1874–1887 (2017). https://doi.org/10.1007/s11666-017-0628-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0628-4

Keywords

Navigation