Skip to main content
Log in

Dynamic Response Characteristics and Fatigue Life Prediction of Printed Circuit Boards for Random Vibration Environments

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The study focuses on the analysis of the surface mounted components of the printed circuit boards (PCB) under random vibration loading. The surface mount technology used for the study involves ball grid arrays. In order to predict the fatigue life of the component under certain defense and automotive applications, modal analysis is done by using the finite element method. The results are verified experimentally using JEDEC standards to validate the finite element design used for the study, and random vibration experiments were performed with finite element analysis. The fatigue life of PCB under different random vibration environments is predicted and compared. The fatigue life of PCB is least with jet cargo environment and is maximum with rail cargo environment. The analysis reveals that under the jet cargo environment, more numbers of natural frequency excitations are present. It was found that upon loading, maximum stress was found to be induced at the corner of solder balls for packages mounted in the center of the PCB. Hence, it is suggested to incorporate design modification such that the central area of the PCB must not contain any packaging designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Accessibility Statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Abbreviations

PCB:

Printed circuit board

BGA:

Ball grid array

FEM:

Finite element method

FEA:

Finite element analysis

CAD:

Computer aided design

PSD:

Power spectral density

FFT:

Fast Fourier Transform

IFFT:

Inverse Fast Fourier Transform

References

  1. T. Wong, F. Palmieri, H. Fenger, Under-filled BGA solder joint vibration fatigue damage, in ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No. 02CH37258) (IEEE, 2002), pp. 961–966

  2. T. Wong, F. Palmieri, B. Reed, H. Fenger, H. Cohen, K. Teshiba, Durability/reliability of BGA solder joints under vibration environment, in 2000 Proceedings. 50th Electronic Components and Technology Conference (Cat. No. 00CH37070) (IEEE, 2000), pp. 1083–1088

  3. T. Wong, B. Reed, H. Cohen, D. Chu, Development of BGA solder joint vibration fatigue life prediction model, in 1999 Proceedings. 49th Electronic Components and Technology Conference (Cat. No. 99CH36299) (IEEE, 1999), pp. 149–154

  4. S.S. Manson, Fatigue-a complex subject-some simple approximations. Exp. Mech. 5(4), 193–226 (1965). https://doi.org/10.1007/BF02321056

    Article  Google Scholar 

  5. V. Tan, M. Tong, K.M. Lim, C.T. Lim, Finite element modeling of electronic packages subjected to drop impact. IEEE Trans. Compon. Packag. Technol. 28(3), 555–560 (2005)

    Article  CAS  Google Scholar 

  6. B. Zhang, H. Ding, X. Sheng, Modal analysis of board-level electronic package. Microelectron. Eng. 85(3), 610–620 (2008)

    Article  CAS  Google Scholar 

  7. Q. Yang, H. Pang, Z. Wang, G. Lim, F. Yap, R. Lin, Vibration reliability characterization of PBGA assemblies. Microelectron. Reliab. 40(7), 1097–1107 (2000)

    Article  Google Scholar 

  8. Q. Yang, Z. Wang, G. Lim, J.H. Pang, F. Yap, R. Lin, Reliability of PBGA assemblies under out-of-plane vibration excitations. IEEE Trans. Compon. Packag. Technol. 25(2), 293–300 (2002)

    Article  Google Scholar 

  9. H. Wang, M. Zhao, Q. Guo, Vibration fatigue experiments of SMT solder joint. Microelectron. Reliab. 44(7), 1143–1156 (2004)

    Article  Google Scholar 

  10. J. Roberts, D. Stillo, Random vibration analysis of a printed wiring board with electronic components. J. IES 34(1), 25–31 (1991)

    Google Scholar 

  11. D. Barker, A. Dasgupta, M. Peeht, PWB solder joint life calculations under thermal and vibrational loading. J. IES 35(1), 17–25 (1992)

    Google Scholar 

  12. D.B.B. Sidharth, Vibration induced fatigue life estimation of corner leads of peripheral leaded components. J. Electron. Packaging 118(4), 244–249 (1996). https://doi.org/10.1115/1.2792159

    Article  Google Scholar 

  13. U.D.o. Defense, MIL-STD-810F (January 2000)

  14. R. Tummala, E.J. Rymaszewski, A.G. Klopfenstein, Microelectronics Packaging Handbook: Subsystem Packaging (Springer, Berlin, 1997)

    Book  Google Scholar 

  15. M.-L. Wu, Vibration-induced fatigue life estimation of ball grid array packaging. J. Micromech. Microeng. 19(6), 065005 (2009)

    Article  Google Scholar 

  16. C. Basaran, R. Chandaroy, Thermomechanical analysis of solder joints under thermal and vibrational loading. J. Electron. Packag. 124(1), 60–66 (2001)

    Article  Google Scholar 

  17. D.J. Ewins, Modal Testing: Theory, Practice, and Application, 2nd edn. (Research Studies Press, Baldock, Hertfordshire, England; Philadelphia, PA, 2000)

    Google Scholar 

  18. M.A. Miner, Cumulative damage in fatigue. J. Appl. Mech. 12(3), A159–A164 (1945)

    Google Scholar 

  19. P. Yang, Z. Chen, Experimental approach and evaluation on dynamic reliability of PBGA assembly. IEEE Trans. Electron Dev. 56(10), 2243–2249 (2009)

    Article  Google Scholar 

  20. E. Wong, R. Rajoo, Y. Mai, S. Seah, K. Tsai, L. Yap, Drop impact: fundamentals and impact characterisation of solder joints, in Proceedings Electronic Components and Technology, 2005. ECTC’05 (IEEE, 2005), pp. 1202–1209

  21. J.P. Quigley, Y.-L. Lee, L. Wang, Review and assessment of frequency-based fatigue damage models. SAE Int. J. Mater. Manuf. 9(3), 565–577 (2016)

    Article  Google Scholar 

  22. T. An, F. Qin, B. Zhou, P. Chen, Y. Dai, H. Li, T. Tang, Vibration lifetime estimation of PBGA solder joints using Steinberg model. Microelectron. Reliab. 102, 113474 (2019)

    Article  Google Scholar 

  23. Y.-C. Lee, B.-T. Wang, Y.-S. Lai, C.-L. Yeh, R.-S. Chen, Finite element model verification for packaged printed circuit board by experimental modal analysis. Microelectron. Reliab. 48(11), 1837–1846 (2008)

    Article  Google Scholar 

  24. Y. Kim, H. Noguchi, M. Amagai, Vibration fatigue reliability of BGA-IC package with Pb-free solder and Pb–Sn solder. Microelectron. Reliab. 46(2–4), 459–466 (2006)

    Article  CAS  Google Scholar 

  25. B. Zhang, H. Ding, X. Sheng, Reliability study of board-level lead-free interconnections under sequential thermal cycling and drop impact. Microelectron. Reliab. 49(5), 530–536 (2009)

    Article  CAS  Google Scholar 

  26. Y.-S. Lai, H.-C. Chang, C.-L. Yeh, Evaluation of solder joint strengths under ball impact test. Microelectron. Reliab. 47(12), 2179–2187 (2007)

    Article  CAS  Google Scholar 

  27. Y.-S. Lai, P.-F. Yang, C.-L. Yeh, Experimental studies of board-level reliability of chip-scale packages subjected to JEDEC drop test condition. Microelectron. Reliab. 46(2–4), 645–650 (2006)

    Article  CAS  Google Scholar 

  28. C.-L. Yeh, Y.-S. Lai, Support excitation scheme for transient analysis of JEDEC board-level drop test. Microelectron. Reliab. 46(2–4), 626–636 (2006)

    Article  CAS  Google Scholar 

  29. J.S. JESD22, B111: Board Level Drop Test Method of Components for Handheld Electronic Products (JEDEC Solid State Technology Association, Virginia, 2003)

    Google Scholar 

  30. Y.-S. Lai, T.H. Wang, H.-H. Tsai, M.-H.R. Jen, Cyclic bending reliability of wafer-level chip-scale packages. Microelectron. Reliab. 47(1), 111–117 (2007)

    Article  Google Scholar 

  31. Y. Zhou, M. Al-Bassyiouni, A. Dasgupta, Harmonic and random vibration durability of SAC305 and Sn37Pb solder alloys. IEEE Trans. Compon. Packag. Technol. 33(2), 319–328 (2010)

    Article  Google Scholar 

  32. S. Ridout, C. Bailey, Review of methods to predict solder joint reliability under thermo-mechanical cycling. Fatigue Fract. Eng. Mater. Struct. 30(5), 400–412 (2007)

    Article  Google Scholar 

  33. D.Y. Chong, F. Che, J.H. Pang, K. Ng, J.Y. Tan, P.T. Low, Drop impact reliability testing for lead-free and lead-based soldered IC packages. Microelectron. Reliab. 46(7), 1160–1171 (2006)

    Article  CAS  Google Scholar 

  34. J.S. Bendat, Probability functions for random responses: prediction of peaks, fatigue damage, and catastrophic failures, NASA Contractor Report NASA CR-33, N64-17990 (1964), p. 57

  35. K. Ortiz, N. Chen, Fatigue damage prediction for stationary wideband processes, in Proceedings of Fifth International Conference on Applications of Statistics and Probability in Soil and Structure Engineering (1987)

  36. C.E. Larsen, L.D. Lutes, Predicting the fatigue life of offshore structures by the single-moment spectral method. Stoch. Struct. Dyn. 2, 91–120 (1991)

    Google Scholar 

  37. P.H. Wirsching, M.C. Light, Fatigue under wide band random stresses. J. Struct. Div. 106(7), 1593–1607 (1980)

    Google Scholar 

  38. A. Dehbi, Y. Ousten, Y. Danto, W. Wondrak, Vibration lifetime modelling of PCB assemblies using Steinberg model. Microelectron. Reliab. 45(9), 1658–1661 (2005)

    Article  Google Scholar 

  39. M. Matsuishi, T. Endo, Fatigue of metals subjected to varying stress. Jpn. Soc. Mech. Eng. Fukuoka Jpn. 68(2), 37–40 (1968)

    Google Scholar 

  40. F.X. Che, J.H.L. Pang, Vibration reliability test and finite element analysis for flip chip solder joints. Microelectron. Reliab. 49(7), 754–760 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra Kumar Verma.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthiheyan, S.G.S., Verma, V.K., Saravanan, S. et al. Dynamic Response Characteristics and Fatigue Life Prediction of Printed Circuit Boards for Random Vibration Environments. J Fail. Anal. and Preven. 20, 920–929 (2020). https://doi.org/10.1007/s11668-020-00895-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00895-w

Keywords

Navigation