Skip to main content
Log in

Computational Study of Atomic Mobility for fcc Phase of Co-Fe and Co-Ni Binaries

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Abundant experimental diffusion data in two Co-base binary systems, that is, Co-Ni and Co-Fe, have been assessed to develop the atomic mobility for the face-centered cubic (fcc) phase of the two binaries. The general agreement is obtained by comprehensive comparisons made between the calculated and experimental diffusion coefficients. The developed mobility database, in conjunction with the CALPHAD-type thermodynamic description, has been successfully used to simulate such typical experimental interdiffusion phenomena as the concentration profiles, the microstructural stability of the Kirkendall plane, and the lattice plane displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sato J., Ohmori T., Ohnuma I., Kainuma R., Ishida K. (2006) Cobalt-Base High-Temperature Alloys. Science 312:90-91

    Article  ADS  Google Scholar 

  2. Guillermet A.F. (1987) Assessment of the Thermodynamic Properties of the Ni-Co System. Z. Metallkd. 78(9):639-647

    Google Scholar 

  3. Guillermet A.F. (1988) Critical Evaluation of the Thermodynamic Properties of the Fe-Co System. High Temp. High Press 19(5):477-499

    Google Scholar 

  4. Sato J., Oikawa K., Kainuma R., Ishida K. (2005) Experimental Verification of Magnetically Induced Phase Separation in αCo Phase and Thermodynamic Calculations of Phase Equilibria in the Co-W System. Mater. Trans. 46(6):1199-1207

    Article  Google Scholar 

  5. Campbell C.E., Boettinger W.J., Kattner U.R. (2002) Development of a Diffusion Mobility Database for Ni-Base Superalloys. Acta Mater. 50(4):775-792

    Article  Google Scholar 

  6. Campbell C.E., Zhao J.-C., Henry M.F. (2004) Comparison of Experimental and Simulated Multicomponent Ni-Base Superalloy Diffusion Couples. J. Phase Equilibria Diffusion 25(1):6-15

    Google Scholar 

  7. Zhu J.Z., Chen L-Q, Shen J., Tikare V. (1999) Coarsening Kinetics from a Variable-Mobility Cahn-Hilliard Equation: Application of a Semi-implicit Fourier Spectral Method. Phys. Rev. E 60(4):3564-3572

    Article  ADS  Google Scholar 

  8. Zhu J.Z., Liu Z.K., Vaithyanathan V., Chen L.-Q. (2002) Linking Phase-Field Model to CALPHAD: Application to Precipitate Shape Evolution in Ni-Base Alloys. Scr. Mater. 46(5):401-406

    Article  Google Scholar 

  9. Zhu J.Z., Wang T., Ardell A.J., Zhou S.H., Liu Z.-K., Chen L.-Q (2004) Three-Dimensional Phase-Field Simulations of Coarsening Kinetics of γ′ Particles in Binary Ni-Al Alloys. Acta Mater. 52(9):2837-2845

    Article  Google Scholar 

  10. Borgenstam A., Engstrom A., Hoglund L., Agren J. (2000) DICTRA, a Tool for Simulation of Diffusional Transformations in Alloys. J. Phase Equilibria Diffusion 21(3):269-280

    Article  Google Scholar 

  11. Hoglund L., Agren J. (2001) Analysis of the Kirkendall Effect, Marker Migration and Pore Formation. Acta Mater. 49(8):1311-1317

    Article  Google Scholar 

  12. Strandlund H., Larsson H. (2004) Prediction of Kirkendall Shift and Porosity in Binary and Ternary Diffusion Couples. Acta Mater. 52(15):4695-4703

    Article  Google Scholar 

  13. Andersson J.O., Agren J. (1992) Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases. J. Appl. Phys. 72(4):1350-1355

    Article  ADS  Google Scholar 

  14. B. Jonsson, Ferromagnetic Ordering and Diffusion of Carbon and Nitrogen in bcc Cr-Fe-Ni Alloys, Z. Metallkd., 85(7), p 498-501

  15. Cornet J.F., Calais D. (1972) Etude de L’Effet Kirkendall D’Apres les Equations de Darken. J. Phys. Chem. Solid. 33(9):1675-1684, in French

    Article  Google Scholar 

  16. Kulkarni N.S., Iswaran C.V., DeHoff R.T. (2005) Intrinsic Diffusion Simulation for Single-Phase, Multicomponent Systems. Acta Mater. 53(15):4097-4110

    Article  Google Scholar 

  17. van Dal M.J.H, Gusak A.M., Cserhati C., Kodentsov A.A., van Loo F.J.J (2001) Microstructural Stability of the Kirkendall Plane in Solid-State Diffusion. Phys. Rev. Lett. 86(15):3352-3355

    Article  ADS  Google Scholar 

  18. van Dal M.J.H., Gusak A.M., Cserhati C., Kodentsov A.A., van Loo F.J.J. (2002) Spatio-Temporal Instabilities of the Kirkendall Marker Planes During Interdiffusion in β′-AuZn. Philos. Mag. A 82(5):943-954

    Article  ADS  Google Scholar 

  19. Ruder R.C., Birchenall C.E. (1951) Cobalt Self-Diffusion-A Study of the Method of Decrease in Surface Activity. Trans. AIME 191(2):142-146

    Google Scholar 

  20. Million B., Kucera J. (1972) Diffusion von Kobalt in Ni-Co-Legierungen bei Temperaturen bis 1000°C. Z. Metallkd. 63(8):484-489, in German

    Google Scholar 

  21. Bussmann W., Herzig Ch., Rempp W., Maier K., Mehrer H. (1979) Isotope Effect and Self-Diffusion in Face-Centered Cubic Cobalt. Phys. Stat. Sol. (a) 56(1):87-97, in German

    Article  Google Scholar 

  22. Lee C.-G., Iijima Y., Hirano K. (1993) Self-Diffusion and Isotope Effect in Face-Centred Cubic Cobalt. Defect Diffusion Forum 95-98:723-728

    Google Scholar 

  23. Hirano K., Agarwala R.P., Averback B.L., Cohen M. (1962) Diffusion in Cobalt-Nickel Alloys. J. Appl. Phys. 33(10):3049-3054

    Article  ADS  Google Scholar 

  24. Million B., Kucera J. (1969) Concentration Dependence of Diffusion of Cobalt in Nickel-Cobalt. Acta Met. 17(3):339-344

    Article  Google Scholar 

  25. Badia M., Vignes A. (1969) Iron, Nickel and Cobalt Diffusion in Transition Metals of Iron Group. Acta Met., 17(2):177-187, in French

    Article  Google Scholar 

  26. Suzuoka T. (1961) Lattice Diffusion and Grain Boundary Diffusion of Cobalt in γ-Iron. Trans. JIM 2(3):176-182

    Google Scholar 

  27. Vladimirov B., Kaygorodov V.N., Klotsman S.M., Trakhtenberg I.S. (1978) Volumetrical Diffusion of Cobalt and Tungsten in Nickel. Fiz. Met. Metalloved. 46(6):1232-1239, in Russian

    Google Scholar 

  28. Jung S.B., Yamane T., Minamino Y., Hirano K., Araki H., Saji S. (1992) Interdiffusion and its Size Effect in Nickel Solid-Solutions of Ni-Co, Ni-Cr and Ni-Ti Systems. J. Mater. Sci. Lett. 11(20):1333-1337

    Article  Google Scholar 

  29. MacEwan J.R., MacEwan J.U., Yaffe L. (1959) Diffusion of Ni-63 in Iron, Cobalt, Nickel, and Iron-Nickel Alloys. Canad. J. Chem. 37(10):1629-1636

    Article  Google Scholar 

  30. Hassner A., Lange W. (1965) Volumenselbstdiffusion in Kobalt-Nickel-Legierungen. Phys. Stat. Sol. 8(1): 77-91, in German

    Article  Google Scholar 

  31. Million B., Kucera J. (1971) Concentration Dependence of Nickel Diffusion in Nickel-Cobalt Alloys. Czech. J. Phys. 21(2):161-171

    Article  ADS  Google Scholar 

  32. Iijima Y., Hirano K. (1971) Interdiffusion in Cobalt-Nickel Alloys. J. Jpn. Inst. Met. 35(5):511-517, in Japanese

    Google Scholar 

  33. Hirai Y., Tasaki Y., Kosaka M. (1973) A Study on the Friction-Welded Diffusion Couples-Chemical Diffusion of Co-Ni Alloy at 1000°C. Nagoya Kogyo Gijutso Shikenso Hokoku 22(4):125-131, in Japanese

    Google Scholar 

  34. Ustad T., Sorum H. (1973) Interdiffusion in Fe-Ni, Ni-Co, and Fe-Co Systems. Phys. Stat. Sol. (a) 20(1):285-294

    Article  Google Scholar 

  35. Kucera J., Ciha K., Stransky K. (1977) Interdiffusion in Co-Ni System-Concentration Penetration Curves and Interdiffusion Coefficients. Czech. J. Phys. B 27(7): 758-768

    Article  ADS  Google Scholar 

  36. Heumann Th., Kottmann A. (1953) Uber den Ablauf der Diffusionsvorgange in Substitutionsmischkristallen. Z. Metallkd. 44(4):139-154, in German

    Google Scholar 

  37. Borovskiy I.B., Marchukova I.D., Ugaste Yu.E. (1967) Local X-ray Spectranalysis of Mutual Diffusion in Binary Systems Forming a Continuuous Series of Solid Solutions-Systems Fe-Ni Ni-Co Ni-Pt and Co-Pt. Phys. Met. Metallogr. 24(3):436-441, in Russian

    Google Scholar 

  38. Ugaste Yu.E., Kodentsov A.A., van Loo F. (1999) Compositional Dependence of Diffusion Coefficients in the Co-Ni, Fe-Ni, and Co-Fe Systems. Phys. Met. Metallogr. 88(6):598-604

    Google Scholar 

  39. Wanin M., Khon A. (1968) Determination by Tracer Technics of Iron and Nickel Diffusion Coefficients in Iron-Nickel Alloys and of Iron and Cobalt in Iron-Cobalt Alloys. C.R. Acad. Sci. C 267(23):1558-1561, in French

    Google Scholar 

  40. Fishman S.G., Gupta D., Lieberman D.S. (1970) Diffusivity and Isotope-Effect Measurements in Equiatomic Fe-Co. Phys. Rev. B 2(6):1451-1460

    Article  ADS  Google Scholar 

  41. Hirone T., Kunitomi N., Sakamoto M. (1958) Diffusion of Cobalt into Iron-Cobalt Alloy. J. Phys. Soc. Jpn. 13(8):840-844

    Article  ADS  Google Scholar 

  42. Hirano K., Cohen M. (1972) Diffusion of Cobalt in Iron-Cobalt Alloys. Trans. JIM 13(2):96-102

    Google Scholar 

  43. Badia M., Vignes A. (1969) Influence of Structure Changes Produced by Interdiffusion on Interdiffusion Coefficient and Kirkendall Effect. Rev. Met. 66(12):915-927, in French

    Google Scholar 

  44. Hirano K., Iijima Y., Araki K., Homma H. (1977) Interdiffusion in Iron-Cobalt Alloys. Trans. ISIJ 17(4):194-203

    Google Scholar 

  45. Campbell C.E. (2005) A New Technique for Evaluating Diffusion Mobility Parameters. J. Phase Equilibria Diffusion 26(5):435-440

    Google Scholar 

  46. Hrebicek J., Kucera J., Stransky K. (1975) Determination of Interdiffusion Coefficients in Co-Ni System with Use of Spline Functions. Czech. J. Phys. B 25(10):1181-1191

    Article  ADS  Google Scholar 

  47. Kucera J., Ciha K., Stransky K. (1977) Interdiffusion in Co-Ni System-III-Intrinsic Diffusion Coefficients. Czech. J. Phys. B 27(9):1049-1059

    Article  ADS  Google Scholar 

  48. van Dal M.J.H., Pleumeekers M.C.L.P., Kodentsov A.A., van Loo F.J.J. (2000) Intrinsic Diffusion and Kirkendall Effect in Ni-Pd and Fe-Pd Solid Solutions. Acta Mater. 48(2):385-396

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CREST, Japan Science and Technology Agency. YC gratefully acknowledges to the 21st century COE program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-W. Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, YW., Jiang, M., Ohnuma, I. et al. Computational Study of Atomic Mobility for fcc Phase of Co-Fe and Co-Ni Binaries. J Phs Eqil and Diff 29, 2–10 (2008). https://doi.org/10.1007/s11669-007-9238-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-007-9238-z

Keywords

Navigation