Skip to main content
Log in

Diffusion Mobilities in fcc Cu-Au and fcc Cu-Pt Alloys

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Abundant diffusion data in binary fcc Cu-Au and fcc Cu-Pt alloys have been assessed to obtain the atomic diffusion mobilities of fcc Cu-Au and fcc Cu-Pt alloys by the CALPHAD method. The obtained mobilities are expressed as functions of compositions and temperatures. Good agreements are obtained from comprehensive comparisons between the calculated and experimentally measured self-diffusion coefficients, impurity diffusion coefficients, tracer diffusion coefficients, interdiffusion coefficients, and concentration curves. Accordingly, the developed mobility parameters, in conjunction with the CALPHAD-type thermodynamic descriptions, can be used to simulate diffusion behaviors at high temperatures. It is believed that the results of this work contribute to the design of a general Cu mobility database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D.-Y. Shih, C.-A. Chang, J. Paraszczak, S. Nunes and J. Cataldo (1991) Thin-film Interdiffusions in Cu/Pd, Cu/Pt, Cu/Ni, Cu/NiB, Cu/Co, Cu/Cr, Cu/Ti, and Cu/TiN Bilayer Films: Correlations of Sheet Resistance with Rutherford Backscattering Spectrometries, J. Appl. Phys 70(6): 3052-3060

    Article  ADS  Google Scholar 

  2. H. Ono, T. Nakano and T. Ohta (1994) Diffusion Barrier Effects of Transition Metals for Cu/M/Si Multilayers (M=Cr, Ti, Nb, Mo, Ta, W), Appl. Phys. Lett 64: 1511-1513

    Article  ADS  Google Scholar 

  3. A. N. Aleshin, V. K. Egorov, B. S. Bokstein and P. V. Kurkin (1993) Study of Diffusion in Thin Au-Cu Films, Thin Solid Films 223: 51-55.

    Article  ADS  Google Scholar 

  4. J. Wang, H. S. Liu, L. B. Liu and Z. P. Jin (2008) Assessment of Diffusion Mobilities in FCC Cu–Ni Alloys, Calphad, 32(1): 94-100

    Article  Google Scholar 

  5. G. Ghosh (2001) Dissolution and Interfacial Reactions of Thin-film Ti/Ni/Ag Metallizations in Solder Joints, Acta Mater, 49: 2609-2624.

    Article  Google Scholar 

  6. C. E. Campbell, W. J. Boettinger and U. R. Kattner (2002) Development of a Diffusion Mobility Database for Ni-base Superalloys, Acta Mater 50(4): 775-792

    Article  Google Scholar 

  7. C. E. Campbell (2005) A New Technique for Evaluating Diffusion Mobility Parameters, J. Phase Equilib. Diff 26(5): 435-440

    Google Scholar 

  8. Y. W. Cui, K. Oikawa, R. Kainuma and K. Ishida (2006) Study of Diffusion Mobility of Al-Zn Solid Solution, J. Phase Equilib. Diff 27(4): 333-342

    Google Scholar 

  9. Y. W. Cui, M. Jiang, I. Ohnuma, K. Oikawa, R. Kainuma and K. Ishida (2008) Computational Study of Atomic Mobility for fcc Phase of Co-Fe and Co-Ni Binaries, J. Phase Equilib. Diff 29(1): 2-10

    Article  Google Scholar 

  10. J. Mimkes and M. Wuttig (1996) Diffusion and Phase Diagram in Binary Alloys, Thermochimica Acta 282/283: 165-173

    Article  Google Scholar 

  11. L. E. Trimble, D. Finn and A. Cosgarea (1965) A Mathematical Analysis of Diffusion Coefficients in Binary Systems, Acta Metall 13: 501-507

    Article  Google Scholar 

  12. J. R. Manning (1967) Diffusion and the Kirkendall Shift in Binary Alloys, Acta Metall 15: 817-826

    Article  Google Scholar 

  13. H. Mehrer (1996) Diffusion in Intermetallics, Mater. Trans. JIM 37(6): 1259-1280

    Google Scholar 

  14. J. Andersson and J. Ågren (1992) Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys 72: 1350-1355

    Article  ADS  Google Scholar 

  15. A. Borgenstam, A. Engström, L. Höglund and J Ågren (2000) Dictra, a Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilib. Diff 21(3): 269-280

    Article  Google Scholar 

  16. T. Helander and J. Ågren (1999) Diffusion in the B2-B.C.C. Phase of the Al-Fe-Ni System-Application of a Phenomenological Model, Acta Mater 47(11): 3291-3300

    Article  Google Scholar 

  17. T. Helander and J. Ågren (1999) A Phenomenological Treatment of Diffusion in Al-Fe and Al-Ni Alloys Having B2-B.C.C. Ordered Structure, Acta Mater 47(4): 1141-1152

    Article  Google Scholar 

  18. B. Jönsson (1995) Assessment of the Mobilities of Cr, Fe and Ni in bcc Cr-Fe-Ni Alloys, ISIJ Int. 35(11): 1415-1421

    Article  Google Scholar 

  19. Y. Liu, Y. Ge, D. Yu, T. Pan, and L. Zhang, Assessment of the Diffusional Mobilities in BCC Ti-V Alloys, J. Alloys Compd., 2008, doi:10.1016/j.jallcom.2008.02.111 (in press)

  20. V. A. Gorbachev, S. M. Klotsman, Y. A. Rabovskiy, V. K. Talinskiy and A. N. Timofeyev (1977) Diffusion of Impurities in Copper. V. Diffusion of Gold, Lead and Bismuth in Copper, Phys. Met. Metall 44(1): 191-194

    Google Scholar 

  21. S. Fujikawa, M. Werner, H. Mehrer and A. Seeger (1987) Diffusion of Gold in Copper over a Wide Range of Temperature, Mater. Sci. Forum 15-18: 431-436

    Article  Google Scholar 

  22. A. B. Martin, R. D. Johnson and F. Asaro (1954) Diffusion of Gold into Copper, J. Appl. Phys 25(3): 364-369

    Article  ADS  Google Scholar 

  23. T. F. Archbold and W. H. King (1965) Diffusion of Gold into Copper, Trans. AIME 233: 839-841

    Google Scholar 

  24. I.G. Greenfield and I. Tweer, Determination of Compositional Profiles near Grain Boundaries by Electron Diffraction, Electron Microscopy and Structure of Materials, Proc. of the Fifth International Materials Symposium, G. Thomas, R. M. Fulrath, and R. M. Fisher, Eds., Sept 13-17, 1971 (University of California, Berkeley), University of California Press, Berkeley, 1972, p 236-245

  25. A. Chatterjee, D. J. Fabian (1968) Lattice and Grain-Boundary Diffusion of Gold in Nickel, J. Inst. Met 96: 186-189

    Google Scholar 

  26. A. Vignes and J. P. Haeussler (1966) Diffusion of Copper in Gold, Mem. Sci. Rev. Metall 63: 1091-1094

    Google Scholar 

  27. S. Benci, G. Gasparrini, E. Germagnoli and G. Schianchi (1965) Diffusion of Gold in Cu3Au, J. Phys. Chem. Solids 26: 687-690

    Article  ADS  Google Scholar 

  28. W.B. Alexander, “Studies on Atomic Diffusion in Metals; I. Self-Diffusion in the Volume and Along the Dislocations of Cu3Au; II. Impurity Diffusion in Aluminum and Dilute Aluminum Alloys,” Ph.D. Thesis, University of North Carolina, 1969

  29. T. Heumann and T. Rottwinkel (1978) Measurement of the Interdiffusion, Intrinsic and Tracer Diffusion Coefficients in Cu-rich Cu-Au Solid Solutions, J. Nucl. Mater. 6970: 567-570

    Article  Google Scholar 

  30. A.V. Vignes and M. Badia, Interdiffusion and Kirkendall Shift in Binary Alloys: Test of the Manning Theory and Influence of the Diffusion Induced Structural Defects on the Interdiffusion Coefficient and Kirkendall Shift, Diffusion Processes, Proc. of the Thomas Graham Memorial Symposium, J.N. Sherwood, A.V. Chadwick, W.M. Muir, and F.L. Swinton, Eds., Vol. 1, p 275-299

  31. A. E. Austin and N. A. Richard (1962) Grain-Boundary Diffusion of Gold in Copper, J. Appl. Phys 33: 3569-3574

    Article  ADS  Google Scholar 

  32. T. O. Ziebold and R. E. Ogilvie (1967) Ternary Diffusion in Copper-Silver-Gold Alloys, Trans. AIME 239: 942-953

    Google Scholar 

  33. I. B. Borovskii, N. P. Il’in and E. L. Loseva (1963) Study of Mutual Diffusion in Cu-Au System, Trudy Inst. Met. A. A. Akad. Nauk SSSR 15: 32-40

    Google Scholar 

  34. M. R. Pinnel and J. E. Bennett (1972) Mass Diffusion in Polycrystalline Copper/Electroplated Gold Planar Couples, Metall Trans 3: 1989-1997

    Article  Google Scholar 

  35. J. Unnam, D. R. Tenney and C. R. Houska (1981) An X-ray Study of Diffusion in the Cu-Au System, Metall. Trans. A 12: 1147-1150

    Article  Google Scholar 

  36. G.V. Kidson and R. Ross, Radioisotopes in Scientific Research: Proceedings of the International Conference held in Paris in September 1957 under the Auspices of the United Nations Educational Scientific and Cultural Organization, R.C. Extermann, Ed., Vol. 1, p 185-193

  37. F. Cattaneo, E. Germagnoli and F. Grasso (1962) Self-diffusion in Platinum, Phil. Mag 7: 1373-1383

    Article  ADS  Google Scholar 

  38. G. Rein, H. Mehrer and K. Maier (1978) Diffusion of 197Pt and 199Au in Platinum at Low Temperatures, Physica Status Solidi A 45(1): 253-261

    Article  Google Scholar 

  39. R. L. Fogelson, Y. A. Ugai and A. V. Pokoev (1972) Diffusion of Platinum in Copper, Fiz. Met. Metalloved 33(5): 1102-1104

    Google Scholar 

  40. G. Neumann, M. Pfundstein and P. Reimers (1982) Diffusion of Platinum in Single Crystals of Silver and Copper, Phil. Mag. A 45(3): 499-507

    Article  ADS  Google Scholar 

  41. R.D. Johnson and B.H. Faulkenberry, Diffusion Coefficients of Copper and Platinum into Copper Platinum Alloys, Air Force Materials Lab, Wright-Patterson Air Force Base, Ohio, Contract No. AF33(657)-8765, Project No. 7351, Tech. Rept. No. ASD-TDR-63-625, 1963

  42. O. Kubaschewski and H. Ebert (1944) Diffusion Measurements in Gold and Platinum Alloys, Z. Elektrochem 50: 138-144

    Google Scholar 

  43. C. Matano (1934) X-ray Studies on the Diffusion of Metals in Copper, Jpn. J. Phys 9: 41-47

    Google Scholar 

  44. J. Wang, L. B. Liu, H. S. Liu and Z. P. Jin (2007) Assessment of the Diffusional Mobilities in the Face-Centred Cubic Au-Ni Alloys, Calphad 31(2): 249-255

    Article  Google Scholar 

  45. B. Sundman, S. G. Fries and W. A. Oates (1998) A Thermodynamic Assessment of the Au-Cu System, Calphad 22(3): 335-354

    Article  Google Scholar 

  46. A. LeClaire, Progress in Metal Physics, B. Chalmers, Ed., Butterworth Scientific Publications, London, 1949, p 306-308

  47. T. Abe, B. Sundman and H. Onodera (2006) Thermodynamic Assessment of the Cu-Pt System, J. Phase Equilib. Diff 27(1): 5-13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhang, L. & Yu, D. Diffusion Mobilities in fcc Cu-Au and fcc Cu-Pt Alloys. J. Phase Equilib. Diffus. 30, 136–145 (2009). https://doi.org/10.1007/s11669-009-9469-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-009-9469-2

Keywords

Navigation