Skip to main content
Log in

Modelling of the Precipitated Phases and Properties of Al-Zn-Mg-Cu Alloys

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The effects of Zn and Mg variations on the precipitated phases and the properties of Al-Zn-Mg-Cu alloys are investigated in this study. The quantities of stable and metastable phases have been calculated under various Zn and Mg contents by using software package JmatPro. The results show that the amount of the main hardening η (MgZn2) phase and η′ phase increase with higher Zn and Mg contents. T (AlCuMgZn) phase and metastable counterpart significantly increase with the reduction of Zn contents or the increase of Mg contents. S (Al2CuMg) phase reduces gradually with the increase of Mg content, while S phase varies only slightly with the Zn content. The precipitation of GP zones is promoted by the increase of Zn or Mg content. The physical and mechanical properties of the alloys have been modelled in such way that increasing Zn or Mg content could reduce electrical conductivity and thermal conductivity, while the mechanical properties improve with increasing Zn content and varies markedly as Mg content changes from 2.7 to 2.9 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Sepehrband and S. Esmaeili, Application of Recently Developed Approaches to Microstructural Characterization and Yield Strength Modeling of Aluminum Alloy AA7030, Mater. Sci. Eng. A, 2008, 487, p 309-315

    Article  Google Scholar 

  2. X.M. Li and M.J. Starink, The Effect of Compositional Variations on Characteristics of Coarse Intermetallic Particles in Overaged 7000 Aluminium Alloys, Mater. Sci. Technol., 2001, 171, p 324-1328

    Google Scholar 

  3. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux, Evolution of Precipitate Microstructures During the Retrogression and Re-Ageing Heat Treatment of an Al-Zn-Mg-Cu Alloy, Acta Mater., 2010, 58, p 248-260

    Article  Google Scholar 

  4. M.J. Starink and X.M. Li, A Model for the Electrical Conductivity of Peak Aged and Overaged Al-Zn-Mg-Cu Alloys, Metall. Mater. Trans. A, 2003, 34A, p 899-911

    Article  ADS  Google Scholar 

  5. J.K. Park and A.J. Ardell, Precipitate. Microstructure of Peak-Aged 7075 Al, Scripta Metall., 1988, 22, p 1115-1119

    Article  Google Scholar 

  6. N. Yazdian, F. Karimzadeh, and M. Tavoosi, Microstructural Evolution of Nanostructure 7075 Aluminum Alloy During Isothermal Annealing, J. Alloys Compd., 2010, 493, p 137-141

    Article  Google Scholar 

  7. K. Osamura, K. Kohno, and H. Okuda, Mesoscopic Structure of Super-High Strength P/M Al-Zn-Mg-Cu Alloys, Mater. Sci. Forum, 1996, 217-222, p 1829-1834

    Article  Google Scholar 

  8. J. Polmear, Light Alloys—Metallurgy of the Light Metals, St. Edmundsbury Press Ltd, Suffolk, 1995

    Google Scholar 

  9. Z. Guo, N. Saunders, A.P. Miodownik, and J.-Ph. Schille, Modelling of Materials Properties and Behaviour Critical to Casting Simulation, Mater. Sci. Eng. A, 2005, 413-414, p 465-469

    Article  Google Scholar 

  10. N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J.-Ph. Schillé, Using JMatPro to Model Materials Properties and Behavior, JOM, 2003, 55, p 60-65

    Article  ADS  Google Scholar 

  11. Z. Guo, N. Saunders, J.P. Schillé, and A.P. Miodownik, Material Properties for Process Simulation, Mater. Sci. Eng. A, 2009, 499, p 7-13

    Article  Google Scholar 

  12. M. Založnik and B. Sarler, Modeling of Macrosegregation in Direct-Chill Casting of Aluminum Alloys: Estimating the Influence of Casting Parameters, Mater. Sci. Eng. A, 2005, 413-414, p 5-91

    Google Scholar 

  13. X. Li, A.P. Miodownik, and N. Saunders, Modelling of Materials Properties in Duplex Stainless Steels, Mater. Sci. Technol., 2002, 18, p 861-868

    Article  Google Scholar 

  14. N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J.P. Schillé, Modelling the Material Properties and Behaviour of Ni-Based Superalloys, Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, Ed., The Minerals, Metals & Materials Society (TMS), 2004, p 849-858

  15. N. Saunders, Phase Diagram Calculations for Ni-Based Superalloys, Superalloys 1996, R.D. Kissinger, Ed., TMS, Warrendale, 1996,

    Google Scholar 

  16. X. Cao, N. Saunders, and J. Campbell, Effect of Iron and Manganese Contents on Convection-Free Precipitation and Sedimentation of Primary α-Al(FeMn)Si Phase in Liquid Al-11.5Si-0.4Mg Alloy, J. Mater. Sci., 2004, 39, p 2303-2314

    Article  ADS  Google Scholar 

  17. A. Sullivan and J.D. Robson, Microstructural Properties of Friction Stir Welded and Post-Weld Heat-Treated 7449 Aluminium Alloy Thick Plate, Mater. Sci. Eng. A, 2008, 478, p 351-360

    Article  Google Scholar 

  18. N. Kamp, A. Sullivan, and J.D. Robson, Modelling of Friction Stir Welding of 7xxx Aluminium Alloys, Mater. Sci. Eng. A, 2007, 466, p 246-255

    Article  Google Scholar 

  19. Z. Guo and W. Sha, Quantification of Precipitate Fraction in Al-Si-Cu Alloys, Mater. Sci. Eng. A, 2005, 392, p 449-452

    Article  Google Scholar 

  20. N. Saunders and A.P. Miodownik, CALPHAD—Calculation of Phase Diagrams: A Comprehensive Guide, Pergamon Materials Series, Vol 1, R.W. Cahn, Ed., Elsevier, Oxford, 1998,

    Google Scholar 

  21. H.M. Flower, High Performance Materials in Aerospace, Chapman & Hall, London, 1995

    Google Scholar 

  22. H.R. Shercliff and M.F. Ashby, A Process Model for Age Hardening of Aluminium Alloys-I. The Model, Acta Metall. Mater., 1990, 38, p 1789-1802

    Article  Google Scholar 

  23. A. Deschamps, F. Livet, and Y. Brechet, Influence of Predeformation on Ageing in an Al-Zn-Mg alloy. I. Microstructure Evolution and Mechanical Properties, Acta Mater., 1998, 47, p 281-292

    Article  Google Scholar 

  24. S.P. Alpay and R. Gurbuz, The Effect of Coarse Second Phase Particles on Fatigue Crack Propagation of An Al-Zn-Mg-Cu Alloy, Scripta Metall., 1994, 30, p 1373-1376

    Article  Google Scholar 

  25. J.D. Robson and P.B. Prangnell, Dispersoid Precipitation and Process Modelling in Zirconium Containing Commercial Aluminium Alloys, Acta Mater., 2001, 49, p 599-613

    Article  Google Scholar 

  26. M. Dhiman, D.K. Dwivedi, R. Sehgal, and I.K. Bhat, Effect of Iron on Microstructure of Al-12Si-1Cu-0.1Mg Alloy, Mater. Manuf. Process., 2008, 23, p 805-808

    Article  Google Scholar 

  27. D.J. Strawbridge, W. Hume-Rothery, and A.T. Little, The Constitution of Al-Cu-Mg-Zn Alloys at 460 °C, J. Inst. Met., 1948, 74, p 191-225

    Google Scholar 

  28. H. Loffler, I. Kavaks, and J. Lendvai, Decomposition Processes in Al-Zn-Mg Alloys, J. Mater. Sci., 1983, 18, p 2215-2240

    Article  ADS  Google Scholar 

  29. T. Ungár, The Formation of Guinier-Preston Zones in the Al-4.8 wt.%Zn-1.2 wt.%Mg Alloy Studied by X-Ray Small Angle Scattering, Z. Metallkd., 1979, 40, p 739-747

    Google Scholar 

  30. G. Groma, E. Kovács-Csetényi, I. Kovács, J. Lendvai, and T. Ungár, The Composition of Guinier-Preston Zones in Al-Zn-Mg Alloys, Philos. Mag. A, 1979, 70, p 653-665

    Article  ADS  Google Scholar 

  31. K.S. Ghosh, K. Das, and U.K. Chatterjee, Correlation of Stress Corrosion Cracking Behaviour with Electrical Conductivity and Open Circuit Potential in Al-Li-Cu-Mg-Zr Alloys, Mater. Corros., 2007, 58, p 181-188

    Article  Google Scholar 

  32. T.C. Tsai and T.H. Chuang, Relationship Between Electrical Conductivity and Stress Corrosion Cracking Susceptibility of Al 7075 and Al 7475 Alloys, Corrosion, 1996, 6, p 414-416

    Article  Google Scholar 

  33. J. Guo and M.T. Samonds, Alloy Thermal Physical Property Prediction Coupled Computational Thermodynamics with Back Diffusion Consideration, J. Phase Equilib. Diffus., 2007, 28, p 58-63

    Article  Google Scholar 

  34. J.K. Park and A.J. Ardell, Relationship Between Electrical Conductivity, Stress Corrosion Cracking Susceptibility of Al 7075 and Al 7475 Alloys, Acta Metall. Mater., 1991, 39, p 591-598

    Article  Google Scholar 

  35. P. Olafsson, R. Sandstrom, and A. Karlsson, Electrical Conductivity of Aluminium Alloys, Mater. Sci. Forum, 1996, 217-222, p 981-986

    Article  Google Scholar 

  36. Y. Zeng, S. Mul, P. Wu, K.P. Ong, and J. Zhang, Relative Effects of All Chemical Elements on the Electrical Conductivity of Metal and Alloys: An Alternative to Norbury-Linde Rule, J. Alloys Compd., 2009, 478, p 345-354

    Article  Google Scholar 

  37. J.M. Molina, R. Prieto, J. Narcisoa, and E. Louis, The Effect of Porosity on the Thermal Conductivity of Al-12 wt.% Si/SiC Composites, Scripta Mater., 2009, 60, p 582-585

    Article  Google Scholar 

  38. L.F. Mondolfo, Aluminium Alloys: Structure and Properties, Butterworth & Co Ltd, London, 1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Li, X. Modelling of the Precipitated Phases and Properties of Al-Zn-Mg-Cu Alloys. J. Phase Equilib. Diffus. 32, 350–360 (2011). https://doi.org/10.1007/s11669-011-9911-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-011-9911-0

Keywords

Navigation