Skip to main content

Advertisement

Log in

Experimental Investigation and Thermodynamic Calculation of the Co-Cr-Mo System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The isothermal section of the Co-Cr-Mo system at 1200 K has been investigated experimentally using scanning electron microscopy coupled with energy dispersive x-ray spectroscopy and x-ray diffraction. Six three-phase regions exist in the 1200 K isothermal section. The experimental results indicated that the maximum solubility of Cr in Co-Mo binary compounds Co3Mo and μ at 1200 K is 5.2 and 23.6 at.%, respectively, and that of Mo in Co-Cr binary compound σ is 39.6 at.%. Based on the literature data of the thermodynamic assessment of Co-Mo, Co-Cr, Cr-Mo binary systems and experimental results of the ternary system, the thermodynamic calculation for Co-Cr-Mo system was carried out by means of CALPHAD technique. The computational results and the experimental data are self-consistent reasonably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q.Y. Huang and H.K. Li, The High-Temperature Alloys, Metallurgical Industry Press, Beijing, 2000, p 10-13

    Google Scholar 

  2. C.T. Sims and W.C. Hagel, The Superalloys, Wiley, New York, 1972, p 145-170

    Google Scholar 

  3. K. Frisk and A. Markstrom, Effect of Cr and V on Phase Equilibria in Co-WC Based Hardmetals, Int. J. Mater. Res., 2008, 99(3), p 287-293

    Article  Google Scholar 

  4. R. Liu, S.Q. Xi, S. Kapoor, and X.J. Wu, Investigation of Solidification Behavior and Associate Microstructures of Co-Cr-W and Co-Cr-Mo Alloy Systems Using DSC Technique, Mater. Sci., 2010, 45, p 6225-6234

    Article  ADS  Google Scholar 

  5. D.L. Klarstrom, Wrought Cobalt-Base Superalloys, J. Mater. Eng. Perform., 1993, 2(4), p 523-530

    Article  Google Scholar 

  6. T.M. Devine and J. Wulff, Cast vs. Wrought Cobalt-Chromium Surgical Implant Alloys, J. Biomed. Mater. Res., 1975, 9, p 151-167

    Article  Google Scholar 

  7. N. Saunders and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Elsevier, Oxford, 1998, p 299-408

    Google Scholar 

  8. J.C. Zhao, Methods for Phase Diagram Determination, 1st ed., Elsevier, Amsterdam, 2007, p 246-291

    Book  Google Scholar 

  9. T.J. Quinn and W. Hume-Rothery, The Equilibrium Diagram of the System Molybdenum-Cobalt, J. Alloys Compd., 1963, 5, p 314-324

    Google Scholar 

  10. C.P. Heijwegen and G.D. Rieck, Determination of the Phase Diagram of the Mo-Co, J. Alloys Compd., 1972, 34, p 309-314

    Google Scholar 

  11. K. Ishida and T. Nishizawa, The Co-Cr (Cobalt-Chromium) System, J. Phase Equilib., 1990, 11(4), p 357-370

    Google Scholar 

  12. K. Frisk and P. Gustafson, An Assessment of the Cr-Mo-W System, CALPHAD, 1988, 12(3), p 247-254

    Article  Google Scholar 

  13. E.E. Fletcher and A.R. Elsea, Effects of Tungsten or Molybdenum Upon the Alpha-Beta Transformation and Gamma Precipitation in Cobalt-Chromium Alloys, Trans. AIME., 1951, 191, p 897-902

    Google Scholar 

  14. S. Rideout, W.D. Manly, E.L. Kamen, B.S. Lement, and P.A. Beek, Intermediate Phases in Ternary Alloy Systems of Transition Elements, Trans. AIME., 1951, 191, p 872-876

    Google Scholar 

  15. A.G. Metcalfe, Thermal and Dilatometric Investigation of the Alloys of Cobalt with Chromium and Molybdenum, Trans. AIME., 1953, 197, p 357-364

    Google Scholar 

  16. J.B. Darby, Jr, and P.A. Beck, Intermediate Phase in the Cr-Mo-Co System at 1300 °C, Trans. AIME., 1955, 203, p 765-766

    Google Scholar 

  17. J.B. Darby, Jr., B.N. Das, Y. Shimomuro, and P.A. Beck, Notes on R-Phase, Trans. AIME., 1958, 212, p 235-236

    Google Scholar 

  18. K. Rajan, Thermodynamic Assessment of Heat Treatments for a Co-Cr-Mo Alloy, J. Mater. Sci., 1983, 18, p 257-264

    Article  MathSciNet  ADS  Google Scholar 

  19. K.P. Gupta, The Co-Cr-Mo (Cobalt-Chromium-Molybdenum) System, J. Phase Equilib., 2005, 26(1), p 87-92

    Article  Google Scholar 

  20. J.C. Zhao, The Diffusion-Multiple Approach to Designing Alloys, Annu. Rev. Mater. Res., 2005, 35, p 51-73

    Article  ADS  Google Scholar 

  21. O. Redlich and A.T. Kister, Algeraic Representation of Thermodynamic Properties and the Classification Solutions, Ind. Eng. Chem. Res., 1948, 40(2), p 345-348

    Article  Google Scholar 

  22. M. Hillert and M. Jarl, A Model for Alloying in Ferromagnetic Metals, CALPHAD, 1978, 2(3), p 227-238

    Article  Google Scholar 

  23. J.M. Joubrt, Crystal Chemistry and Calphad Modeling of the σ Phase, Prog. Mater. Sci., 2008, 53(3), p 528-583

    Article  Google Scholar 

  24. A. Davydov and U.R. Kattner, Thermodynamic Assessment of the Co-Mo System, J. Phase Equilib., 1999, 20(1), p 5-15

    Article  Google Scholar 

  25. A. Davydov, Revised Thermodynamic Description for the Co-Mo System, J. Phase Equilib., 2003, 24(3), p 209-211

    Article  Google Scholar 

  26. K. Oikawa, U.R. Kattner, J. Sato, T. Omori, M. Jiang, K. Anzai, and K. Ishida, Experimental Determination and Thermodynamic Assessment of Phase Equilibria in the Co-Mo System, Mater. Trans., 2012, 53(8), p 1425-1435

    Article  Google Scholar 

  27. A. Kusoffsky and B. Jansson, A Themodynamic Evaluation of the Co-Cr and C-Co-Cr Systems, CALPHAD, 1997, 21(3), p 321-333

    Article  Google Scholar 

  28. K. Oikawa, G.W. Qin, T. Ikeshoji, R. Kainuma, and K. Ishida, Direct Evidence of Magnetically Induced Phase Separation in the fcc Phase and Thermodynamic Calculations of Phase Equilibria of the Co-Cr System, Acta Mater., 2002, 50, p 2223-2232

    Article  Google Scholar 

  29. K.C. HariKumarb, I. Ansara, and P. Wollantsb, Sublattice Modeling of the μ-Phase, CALPHAD, 1998, 22(3), p 324-334

    Google Scholar 

  30. J.O. Andersson and N. Lange, An Experimental Study and a Thermodynamic Evaluation of the Fe-Cr-Mo System, Metal. Trans. A, 1988, 19, p 1385-1394

    Article  Google Scholar 

  31. S.Y. Yang, M. Jiang, H.X. Li, and L. Wang, Thermodynamic Assessment of Co-Cr-W Ternary System, Trans. Nonferr. Met. Soc., 2011, 21, p 2270-2275

    Article  Google Scholar 

  32. J.O. Andersson, A Thermodynamic Evaluation of the Fe-Mo-C System, CALPHAD, 1988, 12(1), p 9-23

    Article  Google Scholar 

  33. Y. Komura, W.G. Sly, and D.P. Shoemaker, The Crystal Structure of R Phase, Mo-Co-Cr, Acta Cryst., 1960, 13, p 575-585

    Article  Google Scholar 

  34. B. Sundman, B. Jansson, and J.O. Andersson, The Thermo-Calc Databank System, CALPHAD, 1985, 9(2), p p153-p190

    Article  Google Scholar 

  35. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15(4), p p317-p425

    Article  Google Scholar 

Download references

Acknowledgements

This investigation is supported by the National Science Foundation of the China (No. 51071135), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20114301110005) and Scientific Research Fund of Hunan Provincial Educational Department (No. 12A128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucheng Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yin, F., Zhang, M. et al. Experimental Investigation and Thermodynamic Calculation of the Co-Cr-Mo System. J. Phase Equilib. Diffus. 35, 544–554 (2014). https://doi.org/10.1007/s11669-014-0317-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-014-0317-7

Keywords

Navigation