Skip to main content
Log in

Cellular Automaton Modeling of Diffusion, Mixed and Interface Controlled Phase Transformation

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

A cellular automaton (CA) model coupled with Svoboda’s analytic solution of diffusional phase transformation was established to simulate β-α transition in titanium alloy. A numeric definition of diffusion, mixed and interface mode transformation is put forward and simulated by the newly developed CA model. To the best of our knowledge, this is the first model that is capable of quantifying the effect of interface moving (interface mobility coefficient or transformation driving force factor) and solute diffusion process (diffusion coefficient) on phase transformation types. A critical interface mobility coefficient exists for mixed mode transformation, below and above which interface mode and diffusion mode dominate, respectively. This indicated that, in isothermal diffusion/mixed/interface mode phase transformations, solute diffusion distance and solute concentration gradient are decreasing gradually with time. Furthermore, it was found during cooling transformation that diffusion mode transformation at high temperature shifts to interface mode at low temperature, where a high cooling rate corresponds to a high transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Hillert, L. Hoeglund, and J. Agren, Diffusion-Controlled Lengthening of Widmanstaetten Plates, Acta Mater., 2003, 51, p 2089-2095

    Article  Google Scholar 

  2. Y.J. Lan, D.Z. Li, and Y.Y. Li, Modeling Austenite Decomposition into Ferrite at Different Cooling Rate in Low-Carbon Steel with Cellular Automaton Method, Acta Mater., 2004, 52, p 1721-1729

    Article  Google Scholar 

  3. M. Hillert, J. Odqvist, and J. Agren, Interface Conditions during Diffusion-Controlled Phase Transformations, Scr. Mater., 2004, 50, p 547-550

    Article  Google Scholar 

  4. J.D.C. Teixeira, B. Appolaire, E.A. Gautier, S. Denis, and L. Hericher, Modeling of the Phase Transformations in Near-β Titanium Alloys During the Cooling After Forging, Comput. Mater. Sci., 2008, 42, p 266-280

    Article  Google Scholar 

  5. J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, Oxford, 2002, p 235

    Book  Google Scholar 

  6. F.V. Nolfi, P.G. Shewman, and J.S. Foster, The Dissolution and Growth Kinetics of Spherical Precipitates, Trans. Metall. Soc. AIME, 1969, 245, p 1427-1432

    Google Scholar 

  7. C. Bos, M.G. Mecozzi, and J. Sietsma, A Microstructure Model for Recrystallisation and Phase Transformation During the Dual-Phase Steel Annealing Cycle, Comput. Mater. Sci., 2010, 48, p 692-699

    Article  Google Scholar 

  8. I. Katzarov, S. Malinov, and W. Sha, Finite Element Modeling of the Morphology of β-α Phase Transformation in Ti-6Al-4V Alloy, Metall. Mater. Trans. A, 2002, 33, p 1027-1040

    Article  Google Scholar 

  9. J. Odqvist, B. Sundman, and J. Agren, A General Method for Calculating Deviation from Local Equilibrium at Phase Interfaces, Acta Mater., 2003, 51, p 1035-1043

    Article  Google Scholar 

  10. G.B. Olson, H.K.D.H. Bhadeshia, and M. Cohen, Coupled Diffusional and Displacive Transformations, Acta. Metall., 1989, 37, p 381-389

    Article  Google Scholar 

  11. C. Bos and J. Sietsma, Application of the Maximum Driving Force Concept for Solid-State Partitioning Phase Transformations in Multi-component Systems, Acta Mater., 2009, 57, p 136-144

    Article  Google Scholar 

  12. Jilt Sietsma and Sybrand van der Zwaag, A Concise Model for Mixed-mode Phase Transformations in the Solid State, Acta Mater., 2004, 52, p 4143-4152

    Article  Google Scholar 

  13. E. Gamsjager, M. Militzer, F. Fazeli, J. Svoboda, and F.D. Fischer, Interface Mobility in Case of the Austenite-to-Ferrite Phase Transformation, Comput. Mater. Sci., 2006, 37, p 94-100

    Article  Google Scholar 

  14. R.G. Thiessen, I.M. Richardson, and J. Sietsma, Physically Based Modelling of Phase Transformations During Welding of Low-Carbon Steel, Mater. Sci. Eng. A, 2006, 427, p 223-231

    Article  Google Scholar 

  15. H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps-the Plasticity and Creep of Metals and Ceramics, Pergamon, New York, 1982, p 431

    Google Scholar 

  16. M. Hillert, Solute Drag, Solute Trapping and Diffusional Dissipation of Gibbs Energy, Acta Mater., 1999, 47(18), p 4481-4505

    Article  Google Scholar 

  17. J. Svoboda, F.D. Fischer, P. Fratzl, E. Gamsjager, and N.K. Simha, Kinetics of Interfaces During Diffusional Transformations, Acta Mater., 2001, 49, p 1249-1259

    Article  Google Scholar 

  18. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Oxford, 1981, p 262

    Google Scholar 

  19. L. Yu, TA15 Titanium Alloy Components During TIG Welding, Master Thesis, Harbin Institute of Technology, China, 2007, p 14

  20. K.J. Song, Y.H. Wei, Z.B. Dong, R. Ma, X.H. Zhan, W.J. Zheng, and K. Fang, Virtual Front Tracking Cellular Automaton Modeling of Isothermal β to α Phase Transformation with Crystallography Preferred Orientation of TA15 Alloy, Model. Simul. Mater. Sci. Eng., 2014, 22(1), p 015006

    Article  ADS  Google Scholar 

  21. K.J. Song, Y.H. Wei, Z.B. Dong, X.H. Zhan, W.J. Zheng, and K. Fang, Numerical Simulation of β to α Phase Transformation in Heat Affected Zone During Welding of TA15 Alloy, Comput. Mater. Sci., 2013, 72, p 93-100

    Article  Google Scholar 

  22. M.F. Zhu, W. Cao, S.L. Chen, C.P. Hong, and Y.A. Chang, Modeling of Microstructure and Microsegregation in Solidification of Multi-component Alloys, J. Phase Equilib. Diff., 2007, 28(1), p 130-138

    Article  Google Scholar 

  23. B. Appolaire, L. Hericher, and E.A. Gautier, Modelling of Phase Transformation Kinetics in Ti Alloys-Isothermal Treatments, Acta Mater., 2005, 53, p 3001-3011

    Article  Google Scholar 

  24. R.G. Thiessen, J. Sietsma, T.A. Palmer, J.W. Elmer, and I.M. Richardson, Phase-field Modelling and Synchrotron Validation of Phase Transformations in Martensitic Dual-Phase Steel, Acta Mater., 2007, 55, p 601-614

    Article  Google Scholar 

  25. S.I. Vooijs, Y. Van Leeuwen, J. Sietsma, and S. Van Der Zwaag, On the Mobility of the Austenite-Ferrite Interface in Fe-Co and Fe-Cu, Metall. Mater. Trans. A, 2000, 31, p 379-385

    Article  Google Scholar 

  26. A. Yamanaka, T. Takaki, and Y. Tomita, Multi-phase-field Modeling of Diffusive Solid Phase Transition in Carbon Steel During Continuous Cooling Transformation, J. Cryst. Growth, 2008, 310, p 1337-1342

    Article  ADS  Google Scholar 

  27. W.R. Qiang, Theoretical Research on Phonon Spectrum and Thermodynamics of Vanadium and Its Hydride, Master thesis, Southwest Jiaotong University, China, 1989

  28. K.J. Song, Z.B. Dong, K. Fang, and Y.H. Wei, Cellular Automaton Modelling of Dynamic Recrystallisation Microstructure Evolution During Friction Stir Welding of Titanium Alloy, Mater. Sci. Technol., 2014, 30(6), p 700-711

    Article  Google Scholar 

  29. T.D. Rane, R. Dewri, S. Ghosh, K. Mitra, and N. Chakraborti, Modeling the Recrystallization Process Using Inverse Cellular Automata and Genetic Algorithms: Studies Using Differential Evolution, J. Phase Equilib. Diffus., 2005, 26(4), p 311-321

    Article  Google Scholar 

  30. S. Kou, Welding Metallurgy, Wiley, Hoboken, 2003

    Google Scholar 

  31. I. Loginova, J. Agren, and G. Amberg, On the Formation of Widmanstatten Ferrite in Binary Fe-C Phase-Field Approach, Acta Mater., 2004, 52, p 4055-4063

    Article  Google Scholar 

  32. C. Bos and J. Sietsma, A Mixed-Mode Model for Partitioning Phase Transformations, Scr. Mater., 2007, 57, p 1085-1088

    Article  Google Scholar 

  33. M. Hillert and M. Schalin, Modeling of Solute Drag in the Massive Phase Transformation, Acta Mater., 2000, 48, p 461-468

    Article  Google Scholar 

  34. W. Wang, J.L. Murray, S.Y. Hu, L.Q. Chen, and H. Weiland, Modeling of Plate-Like Precipitates in Aluminum Alloys-Comparison Between Phase Field and Cellular Automaton Methods, J. Phase Equilib. Diffus., 2007, 28(3), p 258-264

    Article  Google Scholar 

  35. I. Loginova, J. Odqvist, G. Amberg, and J. Agren, The Phase-Field Approach and Solute Drag Modeling of the Transition to Massive γ → α Transformation in Binary Fe-C Alloys, Acta Mater., 2003, 51, p 1327-1339

    Article  Google Scholar 

  36. A. Borgenstam, A. Engstrom, L. Hoglund, and J. Agren, DICTRA, a Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilib., 2000, 21, p 269-280

    Article  Google Scholar 

  37. J. Svoboda, E. Gamsjager, F.D. Fischer, and P. Fratzl, Application of the Thermodynamic Extremal Principle to the Diffusional Phase Transformations, Acta Mater., 2004, 52, p 959-967

    Article  Google Scholar 

  38. H. Larsson, H. Strandlund, and M. Hillert, Unified Treatment of Kirkendall Shift, Migration of Phase Interfaces, Acta Mater., 2006, 54, p 945-951

    Article  Google Scholar 

  39. J. Svoboda, E. Gamsjager, F.D. Fischer, Y. Liu, and E. Kozeschnik, Diffusion Processes in a Migrating Interface: The Thick-Interface Model, Acta Mater., 2011, 59, p 4775-4786

    Article  Google Scholar 

  40. K. Thornton, J. Agren, and P.W. Voorhees, Modelling the Evolution of Phase Boundaries in Solids at the Meso- and Nano-scales, Acta Mater., 2003, 51, p 5675-5710

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support of the project from the National Natural Science Foundation of China (Grant No. 51175253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, K.J., Wei, Y.H., Dong, Z.B. et al. Cellular Automaton Modeling of Diffusion, Mixed and Interface Controlled Phase Transformation. J. Phase Equilib. Diffus. 36, 136–148 (2015). https://doi.org/10.1007/s11669-015-0369-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0369-3

Keywords

Navigation