Skip to main content
Log in

Precipitation Modeling of Multi-Component Nickel-Based Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Computer aided materials design is of increasingly importance and interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. The CALPHAD approach, which emerged first as an approach for the calculation of phase equilibria and thermodynamic properties of complex multi-component, multi-phase systems, has in recent years been applied to a broader field of materials science and engineering beyond phase diagrams, such as solidification, coating, joining, and phase transformation. This approach, therefore, plays an important role in modern materials design in the framework of Integrated Computational Materials Engineering. In this study, we present a modeling approach that integrates thermodynamic calculation and kinetic simulation to simulate the precipitation kinetics of multi-component alloys. Its applications will be demonstrated by the studies of a number of nickel-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Reference

  1. L. Kaufman and H. Bernstein, Computer Calculation of the Phase Diagrams with Special Reference to refractory Materials, Academic Press, New York, 1970

    Google Scholar 

  2. J. Allison, D. Backman, and L. Christodoulou, JOM, 2006, 58(11), p 25-27

    Article  Google Scholar 

  3. Z.-K. Liu, L.-Q. Chen, and K. Rajan, JOM, 2006, 58(11), p 46-50

    Article  Google Scholar 

  4. K. Rajan, Mater. Today, 2005, 8(10), p 38-45

    Article  Google Scholar 

  5. A.J. Ardell, Metall. Mater. Trans. A, 1985, A16, p 2131

    Article  ADS  Google Scholar 

  6. A. Deschamps and Y. Brechet, Acta Mater., 1998, 47(1), p 293-305

    Article  Google Scholar 

  7. S. Esmaeili, D.J. Lloyd, and W.J. Poole, Acta Mater., 2003, 51(8), p 2243-2257

    Article  Google Scholar 

  8. J. Friedel, Dislocations, Pergamon, Oxford, 1964

    MATH  Google Scholar 

  9. R. Kampmann and R. Wagner, Kinetics of Precipitation in Metastable Binary Alloys - Theory and Application to Cu-1.9at%Ti and Ni-14at%Al, Decomposition of Alloys: The Early Stages, P. Haasen et al., Ed., Pergamon Press, Oxford, 1984, p 91-103

    Chapter  Google Scholar 

  10. I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids, 1961, 19, p 35

    Article  ADS  Google Scholar 

  11. O.R. Myhr, Ø. Grong, and S.J. Andersen, Acta Mater., 2001, 49(1), p 65-75

    Article  Google Scholar 

  12. J.D. Robson, Acta Mater., 2004, 52, p 4669-4676

    Article  Google Scholar 

  13. J.D. Robson, M.J. Jones, and P.B. Prangnell, Acta Mater., 2003, 51(5), p 1453-1468

    Article  Google Scholar 

  14. J.S. Langer and A.J. Schwartz, Phys. Rev. A, 1980, 21(3), p 948-958

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Avrami, J. Chem. Phys., 1939, 7(12), p 1103-1112

    Article  ADS  Google Scholar 

  16. M. Avrami, J. Chem. Phys., 1940, 8(2), p 212-224

    Article  ADS  Google Scholar 

  17. M. Avrami, J. Chem. Phys., 1941, 9(2), p 177-184

    Article  ADS  Google Scholar 

  18. A.N. Kolmogorov, Izv. Acad. Sci. SSSR Ser. Math., 1937, 3, p 355-360

    Google Scholar 

  19. J.D. Robson, Mater. Sci. Technol., 2004, 20, p 441-448

    Article  Google Scholar 

  20. M. Starink, J. Mater. Sci., 1997, 32(15), p 4061-4070

    Article  ADS  Google Scholar 

  21. C. Wagner, Acta Metall., 1954, 2(2), p 242-249

    Article  Google Scholar 

  22. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, Calphad, 2009, 33(2), p 328-342

    Article  Google Scholar 

  23. Wu, K.S., Zhang, F., Chen, S.L., Cao, W.S., and Chang, Y.A. A modeling tool for the precipitation simulations of superalloys during heat treatments. in 11th International Symposium on Superalloys. 2008. Champion, PA.

  24. S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, and W.A. Oates, Calphad Comput. Coupling Phase Diagr. Thermochem., 2002, 26(2), p 175-188

    Article  Google Scholar 

  25. W.A. Johnson and R.F. Mehl, Trans. Am. Inst. Min. Metall. Eng., 1939, 135, p 416-458

    Google Scholar 

  26. Gerold, V (1979) Precipitation hardening. In Dislocations in solids. North Holland: Amsterdam.

  27. Y.A. Chang, S.L. Chen, F. Zhang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, and W.A. Oates, Prog. Mater. Sci., 2004, 49(3-4), p 313-345

    Article  Google Scholar 

  28. I. Ansara, Int. Met. Rev., 1979, 24, p 20-53

    Article  Google Scholar 

  29. I. Ansara, B. Sundman, and P. Willemin, Acta Metall., 1988, 36(4), p 977-982

    Article  Google Scholar 

  30. M. Hillert, B. Jansson, B. Sundman, and J. Ågren, Metall, Trans. A, 1985, 16A(2), p 261-266

    Google Scholar 

  31. W. Cao, Y.A. Chang, J. Zhu, S. Chen, and W.A. Oates, Acta Mater., 2005, 53(2), p 331-335

    Article  Google Scholar 

  32. W.A. Oates, F. Zhang, S.L. Chen, and Y.A. Chang, Phys. Rev. B, 1999, 59(17), p 11221-11225

    Article  ADS  Google Scholar 

  33. F. Zhang, Y.A. Chang, Y. Du, S.L. Chen, and W.A. Oates, Acta Mater., 2003, 51(1), p 207-216

    Article  Google Scholar 

  34. R. Kikuchi, Phys. Rev., 1951, 81, p 988

    Article  ADS  MathSciNet  Google Scholar 

  35. C.E. Campbell, W.J. Boettinger, and U.R. Kattner, Acta Mater., 2002, 50, p 775-792

    Article  Google Scholar 

  36. O. Redlich and A.T. Kister, Ind. Eng. Chem., 1948, 40, p 345-348

    Article  Google Scholar 

  37. E. Kozeschnik, I. Holzer, and B. Sonderegger, J. Phase Equilibria Diffus., 2007, 28(1), p 64-71

    Article  Google Scholar 

  38. J.E. Morral and G.R. Purdy, Scr. Metall. Mater., 1994, 30(7), p 905-908

    Article  Google Scholar 

  39. C. Wagner, Z. Elektrochem., 1961, 65, p 581

    Google Scholar 

  40. PanNickel, Thermodynamic database for multicomponent nickel alloys, CompuTherm LLC, Middleton, WI, 2009. www.computherm.com

  41. NIST Diffusion Data Center. http://patapsco.nist.gov/diffusion/.

  42. Sudbrack, C.K. (2004) Decomposition behavior in model Ni-Al-Cr-X superalloys: Temporal evolution and compositional pathways on a nanoscale. In Materials Science and Engineering. Northwestern University: Evanston, IL. p. 235.

  43. S.Q. Xiao and P. Haasen, Acta Metall. Mater., 1991, 39(4), p 651-659

    Article  Google Scholar 

  44. Mao, J (2002) Gamma Prime Precipitation Modeling and Strength Responses in Powder Metallurgy Superalloys, Ph. D. Thesis, College of Engineering and Mineral Resources at West Virginia University, p. 94.

  45. S.L. Semiatin, S.-L. Kim, F. Zhang, and J.S. Tiley, Metall. Mater. Trans., 2015, 46A, p 1715-1730

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial support of US Air Force through the SBIR Phase I and Phase II contracts: FA8650-04-M-5208 and FA8650-05-C-5202. We would especially like to thank Dr. Jeff Simmons and his colleagues of the AFRL at Wright-Patterson for their continuing interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Zhang, F., Chen, SL. et al. Precipitation Modeling of Multi-Component Nickel-Based Alloys. J. Phase Equilib. Diffus. 37, 491–502 (2016). https://doi.org/10.1007/s11669-016-0481-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-016-0481-z

Keywords

Navigation