Skip to main content
Log in

Influences of Initial Compositions, Dendrite Morphologies and Solid-Back Diffusion on Solidification Path of Al-Si-Mg Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The solidification paths of ternary eutectic Al-Si-Mg alloys in the Al-rich corner were investigated by numerical calculation. The thermodynamic data needed in the calculation were obtained by direct coupling simulation program with a CALPHAD software Thermo-Calc via its TQ6-interface and COST2 database. The influences of the initial compositions, dendrite morphologies and the solid diffusion coefficients on the solidification path were analyzed. The solidification paths were calculated with assumed different solid diffusion coefficients varying in eight orders of magnitude and different dendrite morphologies including the five basic geometrical shapes of spherical, cylindrical, plate-like, inward cylindrical, inward spherical and the assumed equiaxed dendrites. The calculated results comparisons showed that initial compositions, dendrite morphologies and solid-back diffusion can significantly influence the solidification path and the type and amounts of eutectic of Al-Si-Mg alloys. The predicted solidification paths and the eutectic fraction of selected Al-Si-Mg alloys calculated with assumption of equiaxed dendrite morphology agreed well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.L. Ferreira, V.R. Voller, B. Nestler, and A. Garcia, Two-Dimensional Numerical Model for the Analysis of Macrosegregation During Solidification, Comp. Mater. Sci., 2009, 46(2), p 358-366

    Article  Google Scholar 

  2. G.W. Zhao, X.Z. Li, D.M. Xu, J.J. Guo, H.Z. Fu, Y. Du, and Y.H. He, Thermo-Calc Based Multicomponent Microsegregation Model and Solidification Paths Calculations, China Foundry, 2012, 9(3), p 269-274

    Google Scholar 

  3. J.A. Taylor, G.B. Schaffer, and D.H. Stjohn, The Role of Iron in the Formation of Porosity in Al-Si-Cu-Based Casting Alloys: Part II. A Phase-Diagram Approach, Metall. Mater. Trans. A, 1999, 30(6), p 1651-1655

    Article  Google Scholar 

  4. F.Y. Xie, T. Kraft, Y. Zuo, C.H. Moon, and Y.A. Chang, Microstructure and Microsegregation in Al-Rich Al-Cu-Mg Alloys, Acta Meter., 1999, 47(2), p 489-500

    Article  Google Scholar 

  5. F.Y. Xie, X.Y. Yan, L. Ding, F. Zhang, S.L. Chen, M.G. Chu, and Y.A. Chang, A Study of Microstructure and Microsegregation of Aluminum 7050 Alloy, Mater. Sci. Eng. A, 2003, 355(1), p 144-153

    Article  Google Scholar 

  6. X. Doré, H. Combeau, and M. Rappaz, Modelling of Microsegregation in Ternary Alloys: Application to the Solidification of Al-Mg-Si, Acta Mater., 2000, 48(15), p 3951-3962

    Article  Google Scholar 

  7. I. Vušanović, B. Šarler, and M.J.M. Krane, Microsegregation During the Solidification of an Al-Mg-Si Alloy in the Presence of Back Diffusion and Macrosegregation, Mater. Sci. Eng. A, 2005, 413–414(6), p 217-222

    Google Scholar 

  8. W.Q. Jie, R.J. Zhang, and Z. He, Thermodynamic Description of Multi- component Multi-phase Alloys and Its Application to the Solidification Process, Mater. Sci. Eng. A, 2005, S413–414(99), p 497-503

    Google Scholar 

  9. Q. Du and A. Jacot, A two-Dimensional Microsegregation Model for the Description of Microstructure Formation During Solidification in Multicomponent Alloys: Formulation and Behaviour of the Model, Acta Mater., 2005, 53(12), p 3479-3493

    Article  Google Scholar 

  10. Y.Z. Zhao, Y.H. Zhao, Q. Li, S.L. Chen, J.Y. Zhang, and K.C. Chou, Effects of Step Size and Cut-Off Limit of Residual Liquid Amount on Solidification Simulation of Al-Mg-Zn System with Scheil Model, Intermetallics, 2009, 17(7), p 491-495

    Article  Google Scholar 

  11. L. Thuinet and H. Combeau, A New Model of Microsegregation for Macrosegregation Computation in Multicomponent Steels. Part I: Theoretical Formulation and Algorithm, Comput. Mater. Sci., 2009, 45(2), p 294-304

    Article  Google Scholar 

  12. L. Thuinet and H. Combeau, A New Model of Microsegregation for Macrosegregation Computation in Multicomponent Steels. Part II: Application to Fe-Ni-C Alloys, Comput. Mater. Sci., 2009, 45(2), p 285-293

    Article  Google Scholar 

  13. H.W. Zhang, C.A. Gandin, H.B. Hamouda, D. Tourret, K. Nakajima, and J.C. He, Prediction of Solidification Paths for Fe-C-Cr Alloys by a Multiphase Segregation Model Coupled to Thermodynamic Equilibrium Calculations, ISIJ Int., 2010, 50(12), p 1859-1866

    Article  Google Scholar 

  14. E.H. Yan, X.Z. Li, M. Rettenmayr, D.M. Liu, Y.Q. Su, J.J. Guo, D.M. Xu, and H.Z. Fu, Design of Hydrogen Permeable Nb-Ni-Ti alloys by Correlating the Microstructures, Solidification Paths and Hydrogen Permeability, Int. J. Hydrogen Energy, 2014, 39(7), p 3505-3516

    Article  Google Scholar 

  15. W.J. Boettinger, U.R. Kattner, and D.K. Banerjee, Analysis of solidification path and microsegregation in multicomponent alloys, Modeling of Casting, Welding and Advanced Solidification Processes, Vol VIII, B.G. Thomas and C. Beckermann, Ed., TMS, Warrendale, 1998, p 159-170

    Google Scholar 

  16. W.J. Boettinger, The Solidification of Multicomponent Alloys, J. Phase Equilib. Diffus., 2016, 37(1), p 4-18

    Article  Google Scholar 

  17. S.J. Liu, G.Y. Yang, and W.Q. Jie, Selection of the Solidification Path of Mg-Zn-Gd Ternary Casting Alloy, Acta Metall. Sin., 2015, 51(5), p 580-586

    Google Scholar 

  18. X.Y. Yan, S.L. Chen, F.Y. Xie, and Y.A. Chang, Computational and Experimental Investigation of Microsegregation in a Al-Rich A-Cu-Mg-Si Quaternary Alloy, Acta Mater., 2002, 50(9), p 2199-2207

    Article  Google Scholar 

  19. Y.A. Chang, S.L. Chen, F. Zhang, X.Y. Yan, F.Y. Xie, R.S. Fetzerd, and W.A. Oatese, Phase Diagram Calculation: Past, Present and Future, Prog. Mater Sci., 2004, 49(3–4), p 313-345

    Article  Google Scholar 

  20. G.W. Zhao, X.Z. Li, D.M. Xu, J.J. Guo, H.Z. Fu, Y. Du, and Y.H. He, Numerical Computations for Temperature, Fraction of Solid Phase and Composition Couplings in Ternary Alloy Solidification with Three Different Thermodynamics Data-Acquisition Methods, Calphad, 2012, 36, p 155-162

    Article  Google Scholar 

  21. D.M. Xu, A Unified Microscale Parameter Approach to Solidification-Transport Process-Based Macrosegregation Modeling for Dendritic Solidification: Part I. Mixture Average-Based Analysis, Metall. Mater. Trans. B, 2001, 32(6), p 1129-1141

    Article  Google Scholar 

  22. D.M. Xu, J.J. Guo, and H. Zfu, Influences of Dendrite Morphologies and Solid-Back Diffusion on Macrosegregation in Directionally Solidified Blade-Like Casting, Mater. Sci. Eng. B, 2003, 344(1–2), p 64-73

    Article  Google Scholar 

  23. G.W. Zhao, D.M. Xu, S.M. Hua, F.H. Zhi, Y. Du, and Y.H. He, Thermo-Calc Linked Computations of Solidification Paths of Ternary Alloys Using an Extended Unified Microsegregation Model, Acta Metall. Sin., 2009, 45(8), p 956-963

    Google Scholar 

  24. G.W. Zhao, X.Z. Li, D.M. Xu, J.J. Guo, H.Z. Fu, Y. Du, and Y.H. He, A Unified Microscale Model for the Primary Solidificaiton Path in Ternary Alloys, Acta Metall. Sin, 2011, 47(9), p 1135-1140

    Google Scholar 

  25. G.W. Zhao, X.Z. Li, D.M. Xu, J.J. Guo, H.Z. Fu, Y. Du, and Y.H. He, Thermo-Calc and T-f S -C L Coupling Based Method to Determine the Solidification Paths of Alloys Solidified Under Condition of Biot ≤ 0.1, Trans. Nonferrous Metal. Soc., 2012, 22(1), p 139-146

    Article  Google Scholar 

  26. W.L. George and J.A. Warren, A Parallel 3D Dendritic Growth Simulator Using the Phase-Field Method, J. Comput. Phys., 2002, 177(2), p 264-283

    Article  ADS  MATH  Google Scholar 

  27. I. Steinbach, Phase-Field Models in Materials Science, Model. Simul. Mater. Sci. Eng., 2009, 17(7), p 1-31

    Article  Google Scholar 

  28. Q. Du, D.G. Eskin, A. Jacot, and L. Katgerman, Two-Dimensional Modelling and Experimental Study on Microsegregation During Solidification of an Al-Cu Binary Alloy, Acta Mater., 2007, 55(5), p 1523-1532

    Article  Google Scholar 

  29. L. Beltran-Sanchez and D.M. Stefanescu, A Quantitative Dendrite Growth Model and Analysis of Stability Concepts, Metall. Mater. Trans. A, 2004, 35(8), p 2471-2485

    Article  Google Scholar 

  30. M.F. Zhu, W. Cao, S.L. Chen, C.P. Hong, and Y.A. Chang, Modeling of Microstructure and Microsegregation in Solidification of Multi-component Alloys, J. Phase Equilib. Diffus., 2007, 28(1), p 130-138

    Article  Google Scholar 

  31. B. Nestler, A 3D parallel simulator for crystal growth and solidification in complex alloy systems, J. Cryst. Growth, 2005, 275(1–2), p 273-278

    Article  ADS  Google Scholar 

  32. N. Al-Rawahi and G. Tryggvason, Numerical Simulation of Dendritic Solidification with Convection: Three-Dimensional Flow, J. Comput. Phys., 2004, 194(2), p 677-696

    Article  ADS  MATH  Google Scholar 

  33. Y. Du, Y.A. Chang, B.Y. Huang, W.P. Gong, Z.P. Jin, H.H. Xu, Z.H. Yuan, Y. Liu, Y.H. He, and F.Y. Xie, Diffusion Coefficients of Some Solutes in fcc and Liquid Al: Critical Evaluation and Correlation, Mater. Sci. Eng. A, 2003, 363(1–2), p 140-151

    Article  Google Scholar 

  34. E.H. Yan, X.Z. Li, Y.Q. Su, D.M. Liu, D.M. Xu, J.J. Guo, and H.Z. Fu, Prediction of The Solidification Path of Al-4.37Cu-27.02Mg Ternary Eutectic Alloy with a Unified Microsegregation Model Coupled with Thermo-Calc, Int. J. Mater. Res., 2013, 104(3), p p244-p254

    Article  Google Scholar 

  35. Y.W. Huang, M.J. Long, P. Liu, D.F. Chen, H.B. Chen, L.T. Gui, T. Liu, and S. Yu, Effects of Partition Coefficients, Diffusion Coefficients, and Solidification Paths on Microsegregation in Fe-Based Multinary Alloy, Metall. Mater. Trans. B, 2016, 48(5), p 2504-2515

    Article  Google Scholar 

  36. Q. Wu, F. Sun, Q.J. Sun, and S.F. Jiang, Solidification Process of Al-Mg-Si Alloys, China J. Nonferrous Met., 2000, 10(5), p 688-692

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51604162), the Opening fund of Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance (2017KJX12), and the National Natural Science Foundation of China (Grant No. 51604161). And we wish to thank institute of solidification processing of materials in Harbin Institute of Technology, for providing the thermodynamic data used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Guangwei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guangwei, Z., Chong, D., Xicong, Y. et al. Influences of Initial Compositions, Dendrite Morphologies and Solid-Back Diffusion on Solidification Path of Al-Si-Mg Alloys. J. Phase Equilib. Diffus. 39, 212–225 (2018). https://doi.org/10.1007/s11669-018-0624-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0624-5

Keywords

Navigation