Skip to main content
Log in

Thermodynamic Calculation of Phase Equilibria in the C-Mo-Zr System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The C-Mo-Zr system was assessed by means of the CALPHAD approach. All of the phase equilibria available from the literature were critically reviewed. The liquid was modeled as substitutional solution phase, while the carbides including fcc-(Mo,Zr)C1−x, bcc-(Mo), bcc-(Zr), hcp-Mo2C, hcp-(Zr) and η-MoC were described by using corresponding sublattice models. The laves-Mo2Zr and shp-MoC phases were considered as binary compounds with no solubility for the third component. The existence of ternary phase was not reported in this system. The modeling of C-Mo-Zr ternary system covers the entire composition and temperature ranges, and a set of self-consistent thermodynamic parameters for the C-Mo-Zr system was systematically optimized. Comprehensive comparisons between the calculated and reported phase diagram data show that the reliable information is satisfactorily accounted for by the present modeling. The liquidus projection and reaction scheme of the C-Mo-Zr system were also generated based on the present thermodynamic assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Ettmayer, H. Kolaska, W. Lengauer, and K. Dreyer, Ti(C, N) Cermets—Metallurgy and Properties, Int. J. Refract. Metals Hard Mater., 1995, 13(6), p 343-351

    Article  Google Scholar 

  2. J. Zackrisson and H.O. Andren, Effect of Carbon Content on the Microstructure and Mechanical Properties of (Ti, W, Ta, Mo)(C, N)(Co, Ni) Cermets, Int. J. Refract. Metals Hard Mater., 1999, 17(4), p 265-273

    Article  Google Scholar 

  3. K.S. Vinod, Comprehensive Hard Materials, 1st ed., Elsevier press, Oxford, 2014

    Google Scholar 

  4. Y. Li, N. Liu, X. Zhang, and C. Rong, Effect of Mo Addition on the Microstructure and Mechanical Properties of Ultra-Fine Grade TiC-TiN-WC-Mo2C-Co Cermets, Int. J. Refract. Metals Hard Mater., 2008, 26(3), p 190-196

    Article  Google Scholar 

  5. X. Zhang and N. Liu, Effects of ZrC on Microstructure, Mechanical Properties and Thermal Shock Resistance of TiC-ZrC-Co-Ni Cermets, Mater. Sci. Eng. A, 2013, 561, p 270-276

    Article  Google Scholar 

  6. V.E. Semenenko and N.N. Pilipenko, Dispersion Ageing of the Mo-Zr-C Alloys, Vopr. At. Nauki Tekh., 2008, 17, p 205-210

    Google Scholar 

  7. S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, and I.G. Talmy, Processing of ZrC-Mo Cermets for High Temperature Applications, Part II: Pressureless Sintering and Mechanical Properties, J. Am. Ceram. Soc., 2008, 91(3), p 873-878

    Article  Google Scholar 

  8. R. Schmid-Fetzer, A. Janz, J. Groebner, and M. Ohno, Aspects of Quality Assurance in a Thermodynamic Mg Alloy Database, Adv. Eng. Mater., 2005, 7(12), p 1142-1149

    Article  Google Scholar 

  9. C. Zhang and Y. Du, A Novel Thermodynamic Model for Obtaining Solid–Liquid Interfacial Energies, Metall. Mater. Trans. A, 2017, 48(12), p 5766-5770

    Article  Google Scholar 

  10. J.O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26(2), p 273-312

    Article  Google Scholar 

  11. L. Zhang, M. Stratmann, Y. Du, B. Sundman, and I. Steinbach, Incorporating the CALPHAD Sublattice Approach of Ordering into the Phase-Field Model with Finite Interface Dissipation, Acta Mater., 2015, 88, p 156-169

    Article  Google Scholar 

  12. N. Li, W. Zhang, Y. Du, W. Xie, G. Wen, and S. Wang, A New Approach to Control the Segregation of (Ta, W)C Cubic Phase in Ultrafine WC-10Co-0.5Ta Cemented Carbides, Scr. Mater., 2015, 100, p 48-50

    Article  Google Scholar 

  13. C. Zhang, Y. Du, S. Zhou, Y. Peng, and J. Wang, Grain Growth and Hardness of TiC-Based Cermets: Experimental Investigation and Thermodynamic Calculations, Ceram. Int., 2016, 42(16), p 19289-19295

    Article  Google Scholar 

  14. W. Zhang, Y. Du, and Y. Peng, Effect of TaC and NbC Addition on the Microstructure and Hardness in Graded Cemented Carbides: Simulations and Experiments, Ceram. Int., 2016, 42(1), p 428-435

    Article  Google Scholar 

  15. C. Zhang, H. Yin, R. Zhang, X. Jiang, G. Liu, and Y. Du, Experimental and Thermodynamic Investigation of Gradient Zone Formation for Ti(C, N)-Based Cermets Sintered in Nitrogen Atmosphere, Ceram. Int., 2017, 43(15), p 12089-12094

    Article  Google Scholar 

  16. J.-O. Andersson, Thermodynamic Properties of Molybdenum-Carbon, CALPHAD, 1988, 12(1), p 1-8

    Article  Google Scholar 

  17. J.-H. Shim, C.-S. Oh, and D.N. Lee, A Thermodynamic Evaluation of the Ti-Mo-C System, Metall. Mater. Trans. B, 1996, 27(6), p 955-966

    Article  Google Scholar 

  18. A. Fernández Guillermet, Analysis of Thermochemical Properties and Phase Stability in the Zirconium-Carbon System, J. Alloys Compd., 1995, 217(1), p 69-89

    Article  Google Scholar 

  19. R.J. Pérez and B. Sundman, Thermodynamic Assessment of the Mo-Zr Binary Phase Diagram, CALPHAD, 2003, 27(3), p 253-262

    Article  Google Scholar 

  20. A. Belsky, M. Hellenbrandt, V.L. Karen, and P. Luksch, New Developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in Support of Materials Research and Design, Acta Crystallogr. B, 2002, 58(3), p 364-369

    Article  Google Scholar 

  21. T.C. Wallace, C.P. Gutierrez, and P.L. Stone, The Molybdenum-Zirconium-Carbon System, J. Phys. Chem., 1963, 67, p 769-801

    Article  Google Scholar 

  22. T.F. Fedorov, Y.B. Kuz’ma, and L.V. Gorshkova, Phase Equilibria in the Ternary System Zr-Mo-C, Poroshk. Metall., 1965, 5(3), p 69-74

    Google Scholar 

  23. S. Wang, C. Zhang, C. Lin, Y. Peng, and Y. Du, Measurement of 900 °C Isothermal Section in the Mo-Ni-Zr System, J. Phase Equilib. Diffus., 2016, 37(6), p 672-679

    Article  Google Scholar 

  24. S.S. Ordan’yan, A.I. Avgustinik, and V.S. Vigdergauz, Constitutional Diagram of the System ZrC-Mo, Izv. Akad. Nauk SSSR Sb. Statei, 1965, p 220–228

  25. A.M. Zakharov and E.M. Savitskii, Phase Diagrams of the Molybdenum-Zirconium-Carbon Systems in the Molybdenum-Rich Region, Izv. Akad. Nauk SSSR Metally, 1967, 6, p 193-200

    Google Scholar 

  26. A.M. Zakharov, I.I. Novikov, and V.G. Parshikov, Molybdenum-Zirconium-Carbon System, Izv. Akad. Nauk SSSR Metally, 1970, 6, p 204-207

    Google Scholar 

  27. V.F. Funke, I.V. Pshenichnyi, Y.D. Loktionov, and L.A. Pliner, Phase Diagrams of Molybdenum Carbide-Group IV and V Metal Carbide Systems, Izv. Akad. Nauk SSSR Neorg. Mater., 1971, 7(10), p 1748-1754

    Google Scholar 

  28. V.S. Telegus, N.V. Herman, and A.P. Popov, The Determination of the Phase Composition of the {Mo, W}-Zr-C Ternary Alloys Rich on Molybdenum (Tungsten), Visn. Lviv. Derz. Univ. Ser. Khim., 1974, 15, p 12-17

    Google Scholar 

  29. V.I. Trefilov, O.M. Barabash, V.A. Borisenko, A.S. Zakharkin, V.P. Krashchenko, V.F. Moiseev, and E.P. Pechkovskii, Study of Composition-Endurance Hardness Diagrams of Molybdenum Alloys with Interstitial Phases, Izv. Akad. Nauk SSSR Metally, 1977, 6, p 136-143

    Google Scholar 

  30. O. Matsumoto, Y. Yaguchi, T. Kajiwara, M. Konuma, and Y. Kanzaki, Preparation and Properties of a Ternary Cubic Solid Solution in the Molybdenum-Zirconium-Carbon System, High Temp. Sci., 1981, 14(3), p 161-169

    Google Scholar 

  31. V.N. Eremenko, T.Y. Velikanova, and L.V. Artyukh, Triangulation of Systems with Binary and ternary Phases of Variable Composition, Diag. Sost. Mater. Nankova Dumka, 1984, p 28–37

  32. L.V. Artuykh, T.Y. Velikanova, and V.N. Eremenko, Physical Chemistry Inorganic Materials, Volume I: Thermodynamics of Intermetallics and Phase Equilibria in Metallic Systems, 1988, p 166–171

  33. O. Fabrichnaya and L. Zeng, C-Mo-Zr ternary phase diagram evaluation, MSIT Evaluation Report, 2016, No. 10.10172.1.4

  34. S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, and I.G. Talmy, Processing of ZrC-Mo Cermets for High-Temperature Applications, Part I: Chemical Interactions in the ZrC-Mo System, J. Am. Ceram. Soc., 2007, 90(7), p 1998-2002

    Article  Google Scholar 

  35. S.K. Kar, V.S. Dheeradhada, and D.M. Lipkin, Phase Stability in the Mo-Ti-Zr-C System via Thermodynamic Modeling and Diffusion Multiple Validation, Metall. Mater. Trans. A, 2013, 44(8), p 3999-4010

    Article  Google Scholar 

  36. A.T. Dinsdale, SGTE Data For Pure Elements, CALPHAD, 1991, 15(4), p 317-425

    Article  Google Scholar 

  37. O. Redlich and A.T. Kister, Thermodynamics of Nonelectrolytic Solutions. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345-348

    Article  Google Scholar 

  38. Y.M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies of Formation of Liquid Alloys Bismuth-Gallium-Tin at 723 °K. Choice of an Analytical Representation of Integral and Partial Excess Functions of Mixing, J. Chim. Phys. Phys. Chim. Biol., 1975, 72(1), p 83-88

    Article  ADS  Google Scholar 

  39. M. Hillert and L.I. Staffansson, Regular Solution Model for Stoichiometric Phases and Ionic Melts, Acta Chem. Scand., 1970, 24(10), p 3618-3626

    Article  Google Scholar 

  40. Y. Peng, Y. Du, P. Zhou, W. Zhang, W. Chen, L. Chen, S. Wang, G. Wen, and W. Xie, CSUTDCC1—A Thermodynamic Database for multicomponent Cemented Carbides, Int. J. Refract. Metals Hard Mater., 2014, 42, p 57-70

    Article  Google Scholar 

  41. B. Sundman, B. Jansson, and J.O. Andersson, The Thermo-Calc Databank System, CALPHAD, 1985, 9(2), p 153-190

    Article  Google Scholar 

  42. Y. Du, R. Schmid-Fetzer, and H. Ohtani, Thermodynamic Assessment of the V-N System, Z. Metallkd., 1997, 88(7), p 545-556

    Google Scholar 

Download references

Acknowledgments

The financial supports from the National Key Research and Development Program of China (Grant No. 2016YFB0700503), National Natural Science Foundation of China (Nos. 51701013 and 51172018), Postdoctoral Science Foundation of China (Grant No. 2017M610765), Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-17-005A1) and Kennametal Inc. are greatly acknowledged. The authors thank Prof. Olga Fabrichnaya at TU Bergakademie Freiberg of Germany for providing key references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhao, C., Yin, H. et al. Thermodynamic Calculation of Phase Equilibria in the C-Mo-Zr System. J. Phase Equilib. Diffus. 39, 766–777 (2018). https://doi.org/10.1007/s11669-018-0664-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0664-x

Keywords

Navigation