Skip to main content
Log in

Endophytic fungi of wild legume Sesbania bispinosa in coastal sand dunes and mangroves of the Southwest coast of India

  • ORIGINAL PAPER
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Evaluation of 450 surface sterilized tissue segments of a seasonal wild legume, Sesbania bispinosa (Jacq.), of coastal sand dunes and mangroves of southwest India yielded 546 isolates comprising 39 endophytic fungi with six dominant taxa (Aspergillus flavus, Aspergillus niger, Cladosporium tenuissimum, Fusarium moniliforme, Penicillium chrysogenum and morpho sp. 1). A consortium of saprophytic, pathogenic and toxigenic fungi exists as endophytes in S. bispinosa. Number of segments colonized, number of isolates obtained, species richness and diversity were higher in S. bispinosa in mangroves compared to coastal sand dunes. Seeds yielded more fungal isolates, but species richness and diversity were low. In spite of low fungal colonization in root segments, the diversity was high. Up to 30–40 % endophytic fungi of S. bispinosa differed between coastal sand dunes and mangroves revealing partial host- and habitat-specificity. As S. bispinosa is extensively used as green manure and forage in southwest India, further studies especially on the bioactive compounds of its endophytic fungi might broaden its range of uses. In addition to conventional morphological techniques, molecular tools would provide precise insight on the endophytic fungi of coastal sand dunes and mangroves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ananda K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Can J Microbiol 48:871–878

    Article  CAS  PubMed  Google Scholar 

  • Anita DD (2010) Microbiological and nutritional studies on the legumes of Nethravathi mangroves, Southwest Coast of India. PhD Dissertation, Biosciences. Mangalore University, Mangalore, p 121

  • Anita DD, Sridhar KR (2009) Assemblage and diversity of fungi associated with mangrove wild legume Canavalia cathartica. Trop Subtrop Agroecosyst 10:225–235

    Google Scholar 

  • Anita DD, Sridhar KR, Bhat R (2009) Diversity of fungi associated with mangrove legume Sesbania bispinosa (Jacq.) W. Wight (Fabaceae). Livest Res Rural Dev 21:67. http://www.lrrd.org/lrrd21/5/cont2105.htm

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  CAS  PubMed  Google Scholar 

  • Arun AB, Sridhar KR (2004) Symbiotic performance of fast-growing rhizobia isolated from the coastal sand dune legumes of west coast of India. Biol Fertil Soils 40:435–439

    Article  Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, De Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65

    Article  Google Scholar 

  • Beena KR, Ananda K, Sridhar KR (2000) Fungal endophytes of three sand dune plant species of west coast of India. Sydowia 52:1–9

    Google Scholar 

  • Bhagya B, Sridhar KR (2009) Ethnobiology of coastal sand dune legumes of southwest India. Indian J Tradit Knowl 9:611–620

    Google Scholar 

  • Bhat KG (2003) Flora of Udupi. Indian Naturalist, Udupi, p 913

    Google Scholar 

  • Bhat DJ (2010) Fascinating microfungi (Hyphomycetes) of Western Ghats—India. Broadway Publishers, Panaji, p 221

    Google Scholar 

  • Bills GF, Polishook JD (1991) Microfungi from Carpinus caroliniana. Can J Bot 69:1477–1482

    Article  Google Scholar 

  • Cai L, Hyde KD, Tsui CKM (2006) Genera of freshwater fungi. Fungal Diversity Research Series # 18. Fungal Diversity Press, Hong Kong, p 261

  • Carmichael JW, Kendrick WB, Conners IL, Sigler L (1980) Genera of Hyphomycetes. The University of Alberta Press, Edmonton, p 386

    Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Chitwood DJ (2002) Phytopathological based strategies for nematode control. Annu Rev Phytopathol 40:221–249

    Article  CAS  PubMed  Google Scholar 

  • Ellis MB (1971) Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, p 608

    Google Scholar 

  • Ellis MB (1976) More dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, p 507

    Google Scholar 

  • Ellis MB, Ellis JP (1987) Microfungi on land plants: an identification handbook. Croom Helm, London, p 818

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Jones EBG, Stanley SJ, Pinruan U (2008) Marine endophyte sources of new chemical natural products: a review. Bot Mar 51:163–170

    Article  Google Scholar 

  • Kathiresan K, Rajendran N (2005) Coastal mangrove forests mitigated tsunami. Estuar Coast Shelf Sci 65:601–606

    Article  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–61

    Article  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2001) Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res 105:1388–1391

    Article  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblage in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  • Löesgen S, Schlöerke O, Meindl K, Herbst-Irmer R, Zeeck A (2007) Structure and biosynthesis of chatocyclinones, new polyketides produced by and endosymbiotic fungus. Eur J Org Chem 2007:2191–2196

    Article  Google Scholar 

  • Ludwig JA, Reynolds JF (1988) Statistical ecology: a primer on methods and computing. John Wiley and Sons, New York, p 337

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, New Jersey, p 192

    Book  Google Scholar 

  • Maria GL, Sridhar KR (2003) Endophytic fungal assemblage of two halophytes from west coast mangrove habitats, India. Czech Mycol 55:241–251

    Google Scholar 

  • Mehta R (2000) WWF—India. In: Singh S, Sastry ARK, Mehta R, Uppal V (eds) Setting biodiversity conservation priorities for India. Wildlife Institute of India, Mangalore, pp 245–266

    Google Scholar 

  • Naik BS, Shashikala J, Krishnamurthy YL (2007) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:90–296

    Google Scholar 

  • Pang K-L, Vrijmoed LLP, Goh TK, Plaingam N, Jones EBG (2008) Fungal endophytes associated with Kandelia candel (Rhizophoraceae) in Mai Po Nature Reserve, Hong Konga. Bot Mar 51:171–178

    Article  Google Scholar 

  • Petrini O (1981) Endophytische Pilze in Epiphytischen Araceae, Bromeliaceae und Orchidiaceae. Sydowia 34:135–148

    Google Scholar 

  • Pielou FD (1975) Ecological diversity. Wiley InterScience, New York, p 165

    Google Scholar 

  • Rao TA, Meher-Homji VM (1985) Strand plant communities of the Indian sub-continent. Proc Indian Acad Sci 94:505–523

    Google Scholar 

  • Rao TA, Sherieff AN (2002) Coastal ecosystem of the Karnataka State, India II—Beaches. Karnataka Association for the Advancement of Science, Bangalore, p 192

    Google Scholar 

  • Rao TA, Suresh PV (2001) Coastal ecosystems of the Karnataka State, India—I. Mangroves. Karnataka Association for the Advancement of Science, Bangalore, p 320

    Google Scholar 

  • Schulz B, Römmert A-K, Dammann U, Aust H-J, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283

    Article  Google Scholar 

  • Seena S, Sridhar KR (2004) Endophytic fungal diversity of 2 sand dune wild legumes from the southwest coast of India. Can J Microbiol 50:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Sekita S, Yoshihira K, Natori S, Kuwano H (1976) Structures of chaetoglobisins C, D, E and F, cytotoxic indole-3-yl-(13) cytochalasans from Chaetomium globosum. Tetrahedron Lett 17:1351–1354

    Article  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467

    Article  Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2010) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–18

    Article  Google Scholar 

  • Taylor JE, Hyde KD, Jones EBG (1999) Endophytic fungi associated with the temperate palm, Trachycarpus fortunei, within and outside its natural geographic range. New Phytol 142:335–346

    Article  Google Scholar 

  • Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54

    Google Scholar 

  • Vega FE, Posada F, Catherine Aime M, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heler T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel K (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Webber J (1981) A natural control of Dutch Elm disease. Nature 292:449–451

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mangalore University for permission to carry out this study in the Department of Biosciences. One of us (SJS) acknowledges the University Grants Commission, New Delhi, India for the award of RMSMS fellowship under the scheme Research Fellowship in Sciences for Meritorious Students. K.R. Sridhar acknowledges the award of UGC-BSR Faculty Fellowship by the University Grants Commission, New Delhi, India. We thank Dr. S. Shishupala for helpful suggestions regarding pathogenic fungi. The authors are indebted to the editor and anonymous referees for suggestions to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kandikere R. Sridhar.

Additional information

Project funding: University Grants Commission, New Delhi, India.

The online version is available at http://www.springerlink.com

Corresponding editor: Zhu Hong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shreelalitha, S.J., Sridhar, K.R. Endophytic fungi of wild legume Sesbania bispinosa in coastal sand dunes and mangroves of the Southwest coast of India. J. For. Res. 26, 1003–1011 (2015). https://doi.org/10.1007/s11676-015-0103-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-015-0103-3

Keywords

Navigation