Skip to main content
Log in

Thermophysical properties of fruit—a review with reference to postharvest handling

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The thermophysical data of fruit is vital to the study and optimization of postharvest handling processes. However, data available in the literature are not always consistent and must not be used directly. It is crucial to examine the accuracy and reliability of the property data. Also, models to predict the thermal properties of fruit are not distinctly identified and included in the list of models for food materials. The aim of this review is to show the gaps in fruit properties data with emphasis on those properties that are important during postharvest handling. This paper also presents a review of the measurement and prediction techniques for the thermophysical properties of fruit. Fruit thermophysical properties vary with temperature, moisture content, cultivar, and even between the various parts of the same product. The presented review is a valuable input for developing mathematical models that predict cooling rate, cooling time, cooling uniformity and refrigeration energy usage during postharvest handling processes (e.g. precooling and cold storage), as well as for applications related to prediction and monitoring of temperature induced fruit quality changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Mukama, A. Ambaw, T.M. Berry, U.L. Opara, Effect of relative humidity on pomegranate quality under simulated ambient storage conditions. Acta Hort. 1201, 265–272 (2018)

    Google Scholar 

  2. M. Mukama, A. Ambaw, T.M. Berry, U.L. Opara, Analysing the dynamics of quality loss during precooling and ambient storage of pomegranate fruit. J. Food Eng. 245, 166–173 (2019)

    Google Scholar 

  3. S. Zhu, M. Marcotte, Y. Ramaswamy, Y. Shao, A. Le-Bailc, Evaluation and comparison of thermal conductivity of food materials at high pressure. Food Bioprod. Process. 86, 147–153 (2008)

    CAS  Google Scholar 

  4. L. Huang, L. Liu, Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method. J. Food Eng. 95, 179–185 (2009)

    CAS  Google Scholar 

  5. J.E. Lozano, Thermal properties of foods in Food Engineering, Volume 1. ed by V.B-C. Gustavo (Eolss Publishers Co. Ltd, Oxford, 2009), pp 70–109

  6. J.K. Carson, J. Wang, M.F. North, D.J. Cleland, Effective thermal conductivity prediction of foods using composition and temperature data. J. Food Eng. 175, 65–73 (2016)

    Google Scholar 

  7. Q. Zou, U.L. Opara, R. McKibbin, A CFD modelling system for airflow and heat transfer in ventilated packaging for fresh foods: I. Initial analysis and development of mathematical models. J. Food Eng. 77, 1037–1047 (2006)

    Google Scholar 

  8. Q. Zou, U.L. Opara, R. McKibbin, A CFD modelling system for airflow and heat transfer in ventilated packaging for fresh foods: II. Computational solution, software development, and model testing. J. Food Eng. 77, 1048–1058 (2006)

    Google Scholar 

  9. T. Gulati, A.K. Datta, Enabling computer-aided food process engineering: property estimation equations for transport phenomena-based models. J. Food Eng. 116(2), 483–504 (2013)

    Google Scholar 

  10. U.L. Opara, Q. Zou, Sensitivity analysis of a CFD modelling system for airflow and heat transfer of fresh food packaging: inlet air flow velocity and inside package configurations. Int. J. Food Eng. 3, 1556–3758 (2007)

    Google Scholar 

  11. M.J. Ferrua, R.P. Singh, Modeling the forced-air cooling process of fresh strawberry packages. Part I: Numerical model. Int. J. Refrig. 32(2), 335–348 (2009)

    CAS  Google Scholar 

  12. J. Dehghannya, M. Ngadi, C. Vigneault, Mathematical modelling procedures for airflow, heat and mass transfer during forced convection cooling of produce: a review. Food Eng. Rev. 2, 227–243 (2010)

    Google Scholar 

  13. J. Dehghannya, M. Ngadi, C. Vigneault, Mathematical modeling of airflow and heat transfer during forced convection cooling of produce considering various package vent areas. Food Control 22, 1393–1399 (2011)

    Google Scholar 

  14. J. Dehghannya, M. Ngadi, C. Vigneault, Transport phenomena modelling during produce cooling for optimal package design: thermal sensitivity analysis. Biosyst. Eng. 111, 315–324 (2012)

    Google Scholar 

  15. A. Ambaw, M.A. Delele, T. Defraeye, Q.T. Ho, U.L. Opara, B.M. Nicolaï, P. Verboven, The use of CFD to characterize and design post-harvest storage facilities: past, present and future. Comput. Electron. Agric. 93, 184–194 (2013)

    Google Scholar 

  16. A. Ambaw, M. Mukama, U.L. Opara, Analysis of the effects of package design on the rate and uniformity of cooling of stacked pomegranates: numerical and experimental studies. Comput. Electron. Agric. 136, 13–24 (2017)

    Google Scholar 

  17. A. Ambaw, M. Mukama, U.L. Opara, Computational fluid dynamics (CFD) based analysis of the aerodynamic and thermodynamic performances of package designs during cooling of stacked pomegranates. Acta Hort. 1201, 205–212 (2018)

    Google Scholar 

  18. T.M. Berry, T. Defraeye, B.M. Nicolai, U.L. Opara, Multiparameter analysis of cooling efficiency of ventilated fruit cartons using CFD: impact of vent hole design and internal packaging. Food Bioprocess Technol. 9(9), 1481–1493 (2016)

    Google Scholar 

  19. T.M. Berry, T.S. Fadiji, T. Defraeye, U.L. Opara, The role of horticultural carton vent hole design on cooling efficiency and compression strength: a multi-parameter approach. Postharvest Biol. Technol. 124, 62–74 (2017)

    Google Scholar 

  20. L. Li, T. Peters, Q. Zhang, J. Zhang, D. Huang, Modeling apple surface temperature dynamics based on weather data. Sensors 14, 20217–20234 (2014)

    PubMed  Google Scholar 

  21. J. Lu, C. Vigneault, M.T. Charles, G.S.V. Raghavan, Heat treatment application to increase fruit and vegetable quality. Stewart Postharvest Review 3, 1–7 (2007)

    Google Scholar 

  22. S. Wang, J. Tang, R.P. Cavalieri, Modelling fruit internal heating rates for hot air and hot water treatments. Postharvest Biol. Technol. 22, 257–270 (2001)

    CAS  Google Scholar 

  23. M. Mukama, A. Ambaw, T.M. Berry, U.L. Opara, Energy usage of forced air precooling of pomegranate fruit inside ventilated cartons. J. Food Eng. 215, 126–133 (2017)

    Google Scholar 

  24. M.L. Hertog, J. Lammertyn, B. De Ketelaere, N. Scheerlinck, B.M. Nicolaï, Managing quality variance in the postharvest food chain. Trends Food Sci. Technol. 18, 320–332 (2007)

    CAS  Google Scholar 

  25. K.A. Fikiin, A.G. Fikiin, Predictive equations for thermophysical properties and enthalpy during cooling and freezing of food materials. J. Food Eng. 40, 1–6 (1999)

    Google Scholar 

  26. L. Fingura, A.A. Teixeira, Food Physics: Physical properties—measurement and applications (Springer, Berlin Heidelberg, 2007), pp. 41–72

    Google Scholar 

  27. S. Sahin S.G. Sumnu, Thermal Properties of Foods. In: Physical Properties of Foods. Food Science Text Series, (Springer, New York, 2006), pp 107–153

  28. F.J. Cuesta, M.D. Alvarez, Mathematical modelling for heat conduction in stone fruits. Int. J. Refrig. 80, 120–129 (2017)

    Google Scholar 

  29. S.C.S.R. de Moura, S.P.M. Germer, D.C.P.M.S. Jardim, Sadahira, Thermophysical properties of tropical fruit juices. Braz. J. Food Technol. 1, 70–76 (1998)

    Google Scholar 

  30. T. Brosnan, D.W. Sun, Precooling techniques and applications for horticultural products—a review. Int. J. Refrig 24, 154–170 (2001)

    Google Scholar 

  31. S. Getahun, A. Ambaw, M. Delele, C. Meyer, U.L. Opara, Analysis of airflow and heat transfer inside fruit packed refrigerated shipping container: Part I—Model development and validation. J. Food Eng. 203, 58–68 (2017)

    Google Scholar 

  32. S. Getahun, A. Ambaw, M. Delele, C. Meyer, U.L. Opara, Analysis of airflow and heat transfer inside fruit packed refrigerated shipping container: Part II—Evaluation of apple packaging design and vertical flow resistance. J. Food Eng. 203, 83–94 (2017)

    Google Scholar 

  33. M.A. Delele, B. Vorstermans, P. Creemers, A.A. Tsige, E. Tijskens, A. Schenk, U.L. Opara, B.M. Nicolaï, P. Verboven, Investigating the performance of thermonebulisation fungicide fogging system for loaded fruit storage room using CFD model. J. Food Eng. 109, 87–97 (2012)

    Google Scholar 

  34. A. Ambaw, P. Verboven, M.A. Delele, T. Defraeye, E. Tijskens, A. Schenk, B.E. Verlinden, U.L. Opara, B.M. Nicolai, CFD-based analysis of 1-MCP distribution in commercial cool store rooms: porous medium model application. Food Bioprocess Technol. 7, 1903–1916 (2014)

    CAS  Google Scholar 

  35. A.C.A. Gratão, V. Silveira Jr., M.A. Polizelli, J. Telis-Romero, Thermal properties of passion fruit juice as affected by temperature and water content. J. Food Process Eng. 27, 413–431 (2005)

    Google Scholar 

  36. N. Chaomuang, D. Flick, O. Laguerre, Experimental and numerical investigation of the performance of retail refrigerated display cabinets. Trends Food Sci. Technol. 70, 95–104 (2017)

    CAS  Google Scholar 

  37. R. Roşca, I. Ţenu, P. Cârlescu, Food chilling methods and CFD analysis of a refrigeration cabinet as a case study. In: Refrigeration, (IntechOpen, 2017)

  38. D.A. Nield, A. Bejan, Convection in porous media, 4th edn. (Springer, New York Heidelberg Dordrecht London, 2013), pp. 31–45

    Google Scholar 

  39. P. Verboven, D. Flick, B.M. Nicolaï, G. Alvarez, Modelling transport phenomena in refrigerated food bulks, packages and stacks: basics and advances. Int. J. Refrig. 29, 985–997 (2006)

    Google Scholar 

  40. M.A. Delele, A. Schenk, E. Tijskens, H. Ramon, B.M. Nicolai, P. Verboven, Optimization of the humidification of cold stores by pressurized water atomizers based on a multiscale CFD model. J. Food Eng. 91, 228–239 (2009)

    Google Scholar 

  41. N.N. Mohsenin, Thermal properties of food and agricultural materials (Gordon and Breach, New York, 1980), pp. 2–246

    Google Scholar 

  42. C.S. Chen, Thermodynamic analysis of the freezing and thawing of foods: Enthalpy and apparent specific heat. J. Food Sci. 50, 1158 (1985)

    CAS  Google Scholar 

  43. V.E. Sweat, Thermal properties of foods. In: Engineering Properties of Foods, ed. By M.A. Rao, S.S.H. Rizvi, 2nd ed. (Boca Raton: CRC Press, 1994), pp. 99–138

  44. P. Kumar, P. Coronel, J. Simunovic, K.P. Sandeep, Thermophysical and dielectric properties of salsa con queso and its vegetable ingredients at sterilization temperatures. Int. J. Food Prop. 11, 112–126 (2008)

    CAS  Google Scholar 

  45. J.E. Lozano, Thermodynamical, thermophysical, and rheological properties of fruits and fruit products. Fruit Manuf., 73–98 (2006)

  46. M. Mukama, A. Ambaw, U.L. Opara, Thermal properties of whole and tissue parts of pomegranate (Punica granatum) fruit. J. Food Meas. Charact. 13(2), 901–910 (2019)

    Google Scholar 

  47. P. Juliano, F.J. Trujillo, G.V. Barbosa-Canovas, K. Knoerzer, The need for thermophysical properties in simulating emerging food processing technologies. In: Innovative Food Processing Technologies: Advances in Multiphysics Simulation. 1st ed. ed by K. Knoerzer, P. Juliano, P. Roupas & C. Versteeg (New York: John, 2011), pp. 23–38

  48. O.J. Ikegwu, F.C. Ekwu, Thermal and physical properties of some tropical fruit and their juices in Nigeria. J. Food Technol. 7, 38–42 (2009)

    Google Scholar 

  49. K. Laohasongkram, S. Chaiwanichsiri, C. Thunpithayakul, W. Ruedeesarnt, Thermal properties of mangoes. J. Sci. Soc. Thailand 21, 63–74 (1995)

    CAS  Google Scholar 

  50. M. Aghbashlo, M.H. Kianmehr, S.R. Hassan-Beygi, Specific heat and thermal conductivity of berberis fruit (Berberis vulgaris). Am. J. Agric. Biol. Sci. 3, 330–336 (2008)

    Google Scholar 

  51. G.D. Mercali, J.R. Sarkis, D.P. Jaeschke, I.C. Tessaro, L.D.F. Marczak, Physical properties of acerola and blueberry pulps. J. Food Eng. 106, 283–289 (2011)

    Google Scholar 

  52. R.F. Zabalaga, I.A.F. Carla, C.T. Carmen, Experimental determination of thermophysical properties of unripe banana slices (Musa cavendish) during convective drying. J. Food Eng. 187, 62–69 (2016)

    Google Scholar 

  53. J.M. Oliveira, B.C. Lessio, C.M. Morgante, M.M. Santos, P.E.D. Augusto, Specific heat (Cp) of tropical fruits: cajá, cashew apple, cocoa, kiwi, pitanga, soursop fruit and yellow melon. Int. Food Res. J. 19, 811–814 (2012)

    Google Scholar 

  54. R.P. Singh, F. Erdogdu, M.S. Rahman, Specific heat and enthalpy of foods. In: Food Properties Handbook, ed by M.S. Rahman (Boca Raton: CRC Press, 2009), pp 500–545

  55. H. Lisowa, M. Wujec, T. Lis, Influence of temperature and variety on the thermal properties of apples. Int. Agrophys. 16, 43–52 (2002)

    Google Scholar 

  56. M.S. Rahman, X.D. Chen, C.O. Perera, An improved thermal conductivity prediction model for fruits and vegetables as a function of temperature, water content and porosity. J. Food Eng. 31(2), 163–170 (1997)

    Google Scholar 

  57. V.E. Sweat, Experimental values of thermal conductivity of selected fruits and vegetables. J. Food Sci. 39, 1080–1091 (1974)

    Google Scholar 

  58. X.G. Liang, Y. Zhang, X. Gek, The measurement of thermal conductivities of solid fruits and vegetables. Meas. Sci. Technol. 10, N82–N86 (1999)

    CAS  Google Scholar 

  59. J. Bon, H. Váquiro, J. Benedito, J. Telis-Romero, Thermophysical properties of mango pulp (Mangifera indica L. cv. Tommy Atkins). J. Food Eng 97, 563–568 (2010)

    Google Scholar 

  60. W.E. Spieb, E. Walz, P. Nesvadba, M. Morley, I.A. van Haneghem, D.R. Salmon, Thermal conductivity of food materials at elevated temperatures. High Temp. High Pressures 33, 693–697 (2001)

    Google Scholar 

  61. J. Martinez-Monzo, J.M. Barat, C. González-Martı́nez, A. Chiralt, P. Fito, Changes in thermal properties of apple due to vacuum impregnation. J. Food Eng. 43, 213–218 (2000)

  62. M. Božiková, Thermophysical parameters of selected fruit and fruit products. PTEP J. Process. Energy Agric. 11, 19–23 (2007)

    Google Scholar 

  63. M. Mukama, A. Ambaw, U.L. Opara, Analysis of the thermal and bio-physical properties of pomegranate fruit. Acta Hort. 1201, 273–280 (2018)

    Google Scholar 

  64. A.H. Bennett, W.G. Chance, R.H. Cubbedge, Thermal properties and heat transfer characteristics of marsh grapefruit. Agricultural Research Service United States Department of Agriculture. Technical Bulletin No. 1413, 1–32 (1970)

  65. A. Rozanski, M. Sobotka, On the interpretation of the needle probe test results: thermal conductivity measurement of clayey soils. Stud. Geotechn. Mech. 35(1), 195–207 (2013)

    Google Scholar 

  66. R.P. Singh, Heating and cooling processes for foods. In Handbook of Food Engineering, 2nd ed. ed. by D.R. Heldman, D.B., Lund (CRC Press, Boca Raton: 2006), pp 397–426

  67. H.S. Carslaw, J.C. Jaeger, Conduction of heat in solids, 2nd edn. (Oxford Univ. Press, Oxford, 1959)

    Google Scholar 

  68. N. Lockmuller, J. Redgrove, L. Kubicar, Measurement of thermal conductivity with the needle probe. High Temp. High Pressures 36, 127–138 (2004)

    Google Scholar 

  69. A. Rozanski, D. Stefaniuk, On the prediction of the thermal conductivity of saturated clayey soils: effect of the specific surface area. Acta Geodyn. Geomater. 13, 184 (2016)

    Google Scholar 

  70. G.S. Campbell, C. Calissendorff, J.H. Williams, Probe for measuring soil specific heat using a heat-pulse method. Soil Sci. Soc. Am. J. 55, 291–293 (1991)

    Google Scholar 

  71. T.R. Gupta, Specific heat of unleavened flat bread at various cooking stages. J. Process Eng. 13, 217 (1990)

    Google Scholar 

  72. P. Simon, Differential scanning calorimetry and its using at study of materials. Oil Coal Gas Petrochem. 42, 36–40 (2000)

    Google Scholar 

  73. V. Vozárová, Thermophysical properties of biological materials in the food processing. In Proceedings of the Int. Scientific Conference: Research and Teaching of Physics in the Context of University Education, 81–86 (2005)

  74. B.A. Fricke, B.R. Becker, Evaluation of thermophysical property models for foods. HVAC&R Res 7(4), 311–330 (2001)

    Google Scholar 

  75. ASHRAE, Thermal properties of foods. In: Refrigeration Handbook. American Society of Heating, Refrigerating, and Air-conditioning Engineers, pp. 9.1–9.31 (Atlanta) (2006)

  76. G. Tchigeov, Thermophysical processes in food refrigeration technology (Food Industry, Moscow, 1979)

    Google Scholar 

  77. K.A. Fikiin, Ice content prediction methods during food freezing: A survey of the Eastern European literature. In: New Developments in Refrigeration for Food Safety and Quality, International Institute of Refrigeration, Paris, France, and American Society of Agricultural Engineers, , St. Joseph, Michigan (1996), pp. 90–97

  78. B. Holland, A.A. Welch, I.D. Unwin, D.H. Buss, A.A. Paul, D.A.T. Southgate, McCance and Widdowson’s—The Composition of Foods (Royal Society of Chemistry and Ministry of Agriculture, Fisheries and Food, Cambridge, 1991)

    Google Scholar 

  79. USDA. Composition of Foods. Agricultural Handbook No. 8. Washington, D.C.: U.S. Department of Agriculture (1975)

  80. Y. Choi, M.R. Okos, Effects of temperature and composition on the thermal properties of food. In: Food Engineering and Process Applications, Transport Phenomena, Vol. 1, ed. by M. Le Maguer, P. Jelen (Elsevier Applied Science Publishers, London, 1986), pp. 93–101.

  81. E.G. Murakami, M.R. Okos, Measurement and Prediction of Thermal Properties of Foods. In: Food Properties and Computer-Aided Engineering of Food Processing Systems, (Dordrecht: Kluwer Academic Publishers, 1989), pp. 3–48

  82. A. Eucken, Allgemeine Gesetzmassigkeiten für das Warmeleitvermogen verschiedener Stoffarten und Aggregatzustande. Forschung auf dem Gebiete des Ingenieurwesens, Ausgabe A 11(1), 6 (1940)

    Google Scholar 

  83. F.L. Levy, A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. Int. J. Refrig. 4(4), 223–225 (1981)

    CAS  Google Scholar 

  84. Kopelman, I. Transient Heat Transfer and Thermal Properties in Food Systems. Ph.D. Thesis, Michigan State University, East Lansing, Michigan (1966)

  85. H.G. Schwartzberg, Mathematical Analysis of the Freezing and Thawing of Foods, Tutorial presented at the AIChE Summer Meeting, Detroit, Michigan (1981)

  86. J.E. Siebel, Specific heat of various products. Ice Refrig. 2, 256–257 (1982)

    Google Scholar 

  87. V.J.K. Mishra, T.V. Gamage, Postharvest physiology of fruit and vegetables. In: Handbook of Food Preservation, 2nd edn. ed. by M.S. Rahman (CRC Press. Boca Raton, 2007), pp. 19–43.

  88. K. Tano, M.K. Oulé, G. Doyon, R.W. Lencki, J. Arul, Comparative evaluation of the effect of storage temperature fluctuation on modified atmosphere packages of selected fruit and vegetables. Postharvest Biol. Technol. 46, 212–221 (2007)

    CAS  Google Scholar 

  89. E. Torrieri, S. Cavella, P. Masi, Modelling the respiration rate of fresh-cut Annurca apples to develop modified atmosphere packaging. Int. J. Food Sci. Technol. 44(5), 890–899 (2009)

    CAS  Google Scholar 

  90. O.J. Caleb, U.L. Opara, C.R. Witthuhn, Modified atmosphere packaging of pomegranate fruit and arils: a review. Food Bioprocess Technol. 5, 15–30 (2012)

    CAS  Google Scholar 

  91. Z.A. Belay, O.J. Caleb, U.L. Opara, Modelling approaches for designing and evaluating the performance of modified atmosphere packaging (MAP) systems for fresh produce: a review. Food Packag. Shelf Life 10, 1–15 (2016)

    Google Scholar 

  92. Z.A. Belay, O.J. Caleb, U.L. Opara, Impacts of low and super-atmospheric oxygen concentrations on quality attributes, phytonutrient content and volatile compounds of minimally processed pomegranate arils (cv. Wonderful). Postharv. Biol. Technol. 124, 119–127 (2017)

  93. A.A. Kader, D.M. Barret, Classification, composition of fruits, and postharvest maintenance of quality. In: Processing fruits: Science and Technology, Vol. 1, biology, principles and applications, ed by L.P. Somogyi, H.S, Rwamaswamy, Y.H. Hui, (Technomic publishing co., Pennsylvania, 2003), pp. 1

  94. C.T. Phan, E.B. Pantastico, K. Ogata, K. Chachin, Respiration and respiratory climacteric. In: Postharvest physiology, handling and utilisation of tropical and subtropical fruits and vegetables, ed. by E.B Pantastico (AVI Publishing, Westport, 1975), pp. 86

  95. J.S. Kang, D.S. Lee, A kinetic model for transpiration of fresh produce in a controlled atmosphere. J. Food Eng. 35, 65–73 (1998)

    Google Scholar 

  96. Y. Song, N. Vorsa, K.L. Yam, Modeling respiration–transpiration in a modified atmosphere packaging system containing blueberry. J. Food Eng. 53, 103–109 (2002)

    Google Scholar 

  97. S.K. Sastry, C. Baird, D.E. Buffington, Transpiration rates of certain fruit and vegetables. ASHRAE Trans. 84, 237 (1978)

    Google Scholar 

  98. B.R. Becker, B.A. Fricke, Transpiration and respiration of fruits and vegetables. In: New developments in refrigeration for food safety and quality. Pp. 160. International institute of refrigeration Paris, France and ASAE, St. Joseph (1996)

  99. M.R. Ravindra, T. Goswami, Comparative performance of precooling methods for the storage of mangoes (Mangifera indica L. cv. Amrapali). J. Food Process Eng. 31, 354–371 (2008)

  100. D.J. Tanner, N.D. Amos, Heat and mass transfer -temperature variability during shipment of fresh produce. Acta Hort. 599, 193–204 (2003)

    Google Scholar 

  101. T. Defraeye, B. Nicolai, W. Kirkman, M. Moore, S. van Niekerk, P. Verboven, P. Cronje, Integral performance evaluation of the fresh-produce cold chain: a case study for ambient loading of citrus in refrigerated containers. Postharvest Biol. Technol. 112, 1–13 (2016)

    Google Scholar 

  102. A.A. Kader, Postharvest biology and technology of pomegranates. In: Pomegranates: Ancient roots to modern medicine. ed. by N.P. Seeram, R.N. Schulman, D. Heber (Boca Raton, Florida: CRC Press, 2006), pp. 211–220

  103. M.E.K. Ngcobo, M.A. Delele, L. Chen, U.L. Opara, Investigating the potential of a humidification system to control moisture loss and quality of ‘Crimson Seedless’ table grapes during cold storage. Postharv. Biol. Technol. 86, 201–211 (2013)

    Google Scholar 

  104. Y.T. Ge, S.A. Tassou, Simulation of the performance of single jet air curtains for vertical refrigerated display cabinets. Appl. Therm. Eng. 21, 201–219 (2001)

    Google Scholar 

  105. M.C.N., Nunes, J.P. Emond, M. Rauth, S. Dea, K.V. Chau, Environmental conditions encountered during typical consumer retail display affect fruit and vegetable quality and waste. Postharv. Biol. Technol. 51, 232–241 (2009)

  106. L. Kou, Y. Luo, D.T. Ingram, S. Yan, W.M. Jurick, Open-refrigerated retail display case temperature profile and its impact on product quality and microbiota of stored baby spinach. Food Control 47, 686–692 (2015)

    Google Scholar 

  107. V.E. Perotti, H.A. del Vecchio, A. Sansevich, G. Meier, F. Bello, M. Cocco, S.M. Garrán, C. Anderson, D. Vázquez, F.E. Podestá, Proteomic, metabolomic, and biochemical analysis of heat treated Valencia oranges during storage. Postharv. Biol. Technol. 62, 97–114 (2011)

    CAS  Google Scholar 

  108. M.A. Lauxmann, J. Borsani, S. Osorio, V.A. Lombardo, C.O. Budde, C.A. Bustamante, L.L. Monti, C.S. Andreo, A.R. Fernie, M.F. Drincovich, M.V. Lara, Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit. Plant Cell Environ. 37, 601–616 (2014)

    CAS  PubMed  Google Scholar 

  109. S. Lurie, R. Pedreschi, Fundamental aspects of postharvest heat treatments. Horticult. Res. 1, 14030 (2014)

    Google Scholar 

  110. L., Yanclo, O.A. Fawole, U.L. Opara, Effects of heat treatments on sensory attributes and decay incidence of pomegranate ('Wonderful') fruit. Acta Horticult. 1201, 183–190 (2018)

  111. L. Zhang, Z. Yu, L. Jiang, J. Jiang, H. Luo, L. Fu, Effect of postharvest heat treatment on proteome change of peach fruit during ripening. J. Proteom. 74, 1135–1149 (2011)

  112. Z. Yun. H. Gao, P. Liu, S. Liu, T. Luo, S. Jin, Q. Xu, J. Xu, Y. Cheng, X. Deng, Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biol. 13, 44 (2013)

  113. F. Artes, J.A. Tudela, R. Villaescusa, Thermal postharvest treatments for improving pomegranate quality and shelf life. Postharv. Biol. Technol. 18, 245–251 (2000)

    Google Scholar 

  114. E. Fallik, Prestorage hot water treatments (immersion, rinsing and bruising). Postharv. Biol. Technol. 32, 125–134 (2004)

    Google Scholar 

  115. S.G. Jljasov, L.K. Angersbach, N.I. Angersbach, A.S. Panin, Thermophysical characteristics of agricultural products and vine (in Russian). Izv. Wuzov. Pišèev. Technol. 4, 81–83 (1987)

    Google Scholar 

  116. R.P. Singh, Thermal diffusivity in food processing. Food Technol. 36, 87 (1982)

    Google Scholar 

  117. C. Ratti, A.S. Mujumdar, Fixed-bed batch drying of shrinking particles with time varying drying air conditions. Drying Technol. 11, 1311–1335 (1993)

    CAS  Google Scholar 

  118. A.H. Bennett, W.G. Chace, R.H. Cubbedge, Red Delicious apples. ASHRAE Trans. 75, 133 (1969)

  119. Choi, Y. Okos, M.R. (1983). Thermal properties of liquid foods—review. In: 1983 meeting of the American Society of Agricultural Engineers, Chicago, iii. Paper No. 83–6516.

  120. M. Zielinska, E. Ropelewska, M. Markowski, Thermophysical properties of raw, hot-air and microwave-vacuum dried cranberry fruits (Vaccinium macrocarpon). LWT-Food Sci. Technol. 85, 204–211 (2017)

    CAS  Google Scholar 

  121. V.V. Komarov, (2012). Handbook of Dielectric and Thermal Properties of Materials at microwave Frequencies (Artech House, London, 2012), pp 13–66

  122. W. Phomkong, G. Srzednicki, R.H. Driscoll, Thermophysical properties of stone fruit. Drying Technol. 24, 195–200 (2006)

    Google Scholar 

  123. F.G. Smith, A.J. Ede, R. Gane, The thermal conductivity of frozen foodstuffs. Modern Refrig. 55, 254 (1952)

    Google Scholar 

  124. J.F.M. Hidalgo, Determination of the thermal properties and heat transfer characteristics of high concentration orange pulp. MSc Thesis (2012)

  125. C. Ditchfield, C.C. Tadini, R.K. Singh, R.T. Toledo, Heat transfer during thermal processing of a temperature dependent non-Newtonian fluid in a tubular heat exchanger. Chem. Eng. Process. 46, 472–476 (2007)

    CAS  Google Scholar 

  126. R. Espinoza-Guevara, J. Caro-Corrales, C. Ordorica- Falomir, J. Zazueta-Morales, M. Veja-Garcia, K. Cronin, Thermophysical properties of pulp and rind of papaya cv. Maradol. Int. J. Food Prop. 13, 65–74 (2009)

  127. J.E. Lozano, M.J. Urbicain, R. Rotstein, Thermal conductivity of apples as a function of moisture content. J. Food Sci. 44, 724–728 (1979)

    Google Scholar 

  128. S. Denys, M.E. Hendrickx, Measurement of the thermal conductivity of foods at high pressure. J. Food Sci. 64, 709–713 (1999)

    CAS  Google Scholar 

  129. S. Alvarado, E. Marin, A.G. Juarez, A. Calderon, R. Ivanov, A hot-wire method based thermal conductivity measurement apparatus for teaching purposes. Eur. J. Phys. 33, 897–906 (2012)

    Google Scholar 

  130. R.G. Moreira, J. Palau, V.E. Sweat, X. Sun, Thermal and Physical Properties of Tortilla Chips as a Function of Frying Time. J. Food Process. Preserv. 19, 175–189 (1995)

    Google Scholar 

  131. P. Barnwal, K.K. Singh, A. Sharma, A.K. Choudhary, S.N. Saxena, Influence of pin and hammer mill on grinding characteristics, thermal and antioxidant properties of coriander powder. J. Food Sci. Technol. 52, 7783–7794 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  132. J. Telis-Romero, V.R.N., Telis, A.L. Gabas, F. Yamashita, Thermophysical properties of Brazilian orange juice as affected by temperature and water content. J. Food Eng. 38, 27–40 (1998)

  133. D. Souza, L.D.F. Marczak, I.C. Tessaro, Estudo das Propriedades Físicas de Polpas e Néctares de Pequenos Frutos. Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, pp. 171. (2008). (As cited by 51).

  134. D. Bellet, M. Sengelin, C. Thirriot, Determination des proprietes thermophysiques de liquides non-newtoniens a l'áide d'une cellule a cylindres coaxiaux. Int. J. Heat Mass Transf. 18, 1177–1187 (1975)

    CAS  Google Scholar 

  135. V.T. Karathanos, G.D. Saravacos, Porosity and pore size distribution of starch materials. J. Food Eng. 18, 259–280 (1993)

    Google Scholar 

  136. J. Rodriguez‐Ramirez, L. Mendez‐Lagunas, A. Lopez‐Ortiz, S.S. Torres, True density and apparent density during the drying process for vegetables and fruits: a review. J. Food Sci. 77(12) (2012)

  137. J.M. Lutz, R.E. Hardenburg, The commercial storage of fruits, vegetables, and florists and nursery stocks. USDA Handbook 66 (1968)

  138. E.C. Maxie, F.G. Mitchell, A. Greathead, Studies on strawberry quality. Calif. Agric 13(2):11–16 (1959)

  139. J.M. Lutz, Factors influencing the quality of american grapes in storage. USDA Techn. Bull. 606 (1938)

  140. L.L. Claypool, F.W. Allen, The influence of temperature and oxygen level on the respiration and ripening of Wickson plums. Hilgardea 21, 129 (1951)

    CAS  Google Scholar 

  141. E.W. Scholz, H.B. Johnson, W.R. Buford, Heat evolution rates of some Texas-grown fruits and vegetables. Rio Grande Valley Hortic. Soc. J.177, 170 (1953)

Download references

Acknowledgements

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Number: 64813). The opinions, findings and conclusions or recommendations expressed are those of the author(s) alone, and the NRF accepts no liability whatsoever in this regard. We acknowledge the DAAD (German Academic Exchange), the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM), and Stellenbosch University Consolidoc 2020 award. Research reported in this publication was supported in part by the Foundation for Food and Agriculture Research under award number – Grant ID: DFs-18-0000000008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umezuruike Linus Opara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukama, M., Ambaw, A. & Opara, U.L. Thermophysical properties of fruit—a review with reference to postharvest handling. Food Measure 14, 2917–2937 (2020). https://doi.org/10.1007/s11694-020-00536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00536-8

Keywords

Navigation