Skip to main content
Log in

A powerful electrochemical sensor based on Fe3O4 nanoparticles-multiwalled carbon nanotubes hybrid for the effective monitoring of sunset yellow in soft drinks

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The investigation of synthetic dyes in beverages is significant, owing to their pathogenic and low toxicity a Fe3O4–MWCNTs electrochemical sensor was developed for the determination of sunset yellow (SY) in beverages. A simple one-step hydrothermal method was implemented for the synthesis of Fe3O4–MWCNTs nanocomposite. The structural and surface morphologies of Fe3O4–MWCNTs were studied using XRD, TEM, EDS and FE-SEM techniques. The synthesized nanocomposite showed cubic face centered Fe3O4 nanostructure with a probable crystallite size. The anchoring of Fe3O4 nanoparticles in MWCNTs were further conformed with TEM analysis. The FE-SEM analysis showed that the cubical shaped Fe3O4 nanoparticles were strongly anchored with an estimated granules size. The synthesized composite was utilized for the fabrication of sensitive and selective electrochemical sensor based on the drop casting of Fe3O4–MWCNTs composite on glassy carbon electrode (GCE) (Fe3O4–MWCNTs/GCE). The fabricated sensor was used for the quantification of SY. The sensor exhibited enhanced oxidation activity towards SY determination, by providing operational access to its determination in the field of food safety control. CV, DPV, and EIS techniques were utilized for the investigation of the electrochemical performance of SY. The influence of pH value of phosphate buffer solution (PBS) and effect of scan rate on the peak currents of SY were deliberated. The oxidation peak currents of SY were proportional to its concentrations in the range from 0.2 to 3.5 µM with a low limit of detection of 1.4 nM. The newly fabricated sensor exhibited good selectivity, stability, repeatability and reproducibility. Moreover, it was successfully applied for the detection of SY in soft drinks with acceptable recoveries. The developed sensor was viable with a good sensitivity and simple option for SY detection in the field of food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Arvand, M. Zamani, M.S. Ardaki, Rapid electrochemical synthesis of molecularly imprinted polymers on functionalized multi-walled carbon nanotubes for selective recognition of sunset yellow in food samples. Sens. Actuators B 243, 927–939 (2017)

    CAS  Google Scholar 

  2. X. Chen, K. Wu, Y. Sun, X. Song, Highly sensitive electrochemical sensor for sunset yellow based on the enhancement effect of alumina microfibers. Sens. Actuators B 185, 582–586 (2013)

    CAS  Google Scholar 

  3. N.E. Llamas, M. Garrido, M.S. Di Nezio, B.S.F. Band, Second-order advantage in the determination of amaranth, sunset yellow FCF and tartrazine by UV–Vis and multivariate curve resolution alternating least squares. Anal. Chim. Acta 655, 38–42 (2009)

    CAS  PubMed  Google Scholar 

  4. L. Magerusan, F. Pogacean, M. Coros, C. Socaci, S. Pruneanu, C. Leostean, I.O. Pana, Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection. Electrochim. Acta 283, 578–589 (2018)

    CAS  Google Scholar 

  5. M. Bijad, H.K. Maleh, M. Farsi, S.A. Shahidi, An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact. 12, 634–640 (2018)

    Google Scholar 

  6. M. Elyasi, M.A. Khalilzadeh, H.K. Maleh, High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem. 141, 4311–4317 (2013)

    CAS  PubMed  Google Scholar 

  7. M. Roosta, M. Ghaedi, R. Sahraei, M.K. Purkait, Ultrasonic assisted removal of sunset yellow from aqueous solution by zinc hydroxide nanoparticle loaded activated carbon: optimized experimental design. Mater. Sci. Eng. C 52, 82–89 (2015)

    CAS  Google Scholar 

  8. L. Yu, M. Shi, X. Yue, L. Qu, A novel and sensitive hexadecyltrimethylammonium bromide functionalized graphene supported platinum nanoparticles composite modified glassy carbon electrode for determination of sunset yellow in soft drinks. Sens. Actuators B 209, 1–8 (2015)

    CAS  Google Scholar 

  9. X. Wu, X. Zhang, C. Zhao, X. Qian, One-pot hydrothermal synthesis of ZnO/rGO/ZnO@Zn sensor for sunset yellow in soft drinks. Talanta 179, 836–844 (2018)

    CAS  PubMed  Google Scholar 

  10. Y. Songyang, X. Yang, S. Xie, H. Hao, J. Song, Highly-sensitive and rapid determination of sunset yellow using functionalized montmorillonite-modified electrode. Food Chem. 173, 640–644 (2015)

    CAS  PubMed  Google Scholar 

  11. J. Wang, B. Yang, K. Zhang, D. Bin, Y. Shiraishi, P. Yang, Y. Du, Highly sensitive electrochemical determination of Sunset Yellow based on the ultrafine Au–Pd and reduced graphene oxide nanocomposites. J. Colloid Interface Sci. 481, 229–235 (2016)

    CAS  PubMed  Google Scholar 

  12. K. Rovina, S. Siddiquee, S. Md Shaarani, Highly sensitive electrochemical determination of sunset yellow in commercial food products based on CHIT/GO/MWCNTs/AuNPs/GCE. Food Control 82, 66–73 (2017)

    CAS  Google Scholar 

  13. H. Yang, Y. Long, H. Li, S. Pan, H. Liu, J. Yang, X. Hu, Carbon dots synthesized by hydrothermal process via sodium citrate and NH4HCO3 for sensitive detection of temperature and sunset yellow. J. Colloid Interface Sci. 516, 192–201 (2018)

    CAS  PubMed  Google Scholar 

  14. O.I. Lipskikh, E.I. Korotkova, Ye.P. Khristunova, J. Barek, B. Kratochvil, Sensors for voltammetric determination of food azo dyes—a critical review. Electrochim. Acta 260, 974–985 (2018)

    CAS  Google Scholar 

  15. K. Deng, C. Li, X. Li, H. Huang, Simultaneous detection of sunset yellow and tartrazine using the nanohybrid of gold nanorods decorated graphene oxide. J. Electroanal. Chem. 780, 296–302 (2016)

    CAS  Google Scholar 

  16. T. Gan, J. Sun, S. Cao, F. Gao, Y. Zhang, Y. Yang, One-step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of sunset yellow and tartrazine. Electrochim. Acta 74, 151–157 (2012)

    CAS  Google Scholar 

  17. W. Zhang, T. Liu, X. Zheng, W. Huang, C. Wan, Surface-enhanced oxidation and detection of Sunset Yellow and Tartrazine using multi-walled carbon nanotubes film-modified electrode. Colloids Surf. B 74, 28–31 (2009)

    CAS  Google Scholar 

  18. J.J. Berzas, J.R. Flores, M.J.V. Llerena, N.R. Farinas, Spectrophotometric resolution of ternary mixtures of tartrazine, patent blue V and indigo carmine in commercial products. Anal. Chim. Acta 391, 353–364 (1999)

    Google Scholar 

  19. L.F. Capitan-Valley, M.D. Fernandez, I. Orbe, J.L. Vilchez, R. Avidad, Simultaneous determination of the colorants sunset yellow FCF and quinoline yellow by solid-phase spectrophotometry using partial least squares multivariate calibration. Analyst 122, 351–354 (1997)

    Google Scholar 

  20. B.P. Ramanbhai, R.P. Mukesbhai, A.P. Ambubhai, K.S. Arvindbhai, G. Ajaybhai, Separation and determination of food colors in pharmaceutical preparations by column chromatography. Analyst 111, 577–578 (1986)

    Google Scholar 

  21. M. Ma, X. Luo, B. Chen, S. Su, S. Yao, Simultaneous determination of water-soluble and fat-soluble synthetic colorants in foodstuff by high-performance liquid chromatography diode array detection–electrospray mass spectrometry. J. Chromatogr. A 1103, 170–176 (2006)

    CAS  PubMed  Google Scholar 

  22. F.J. Liu, C.T. Liu, W. Li, A.N. Tang, Dispersive solid-phase microextraction and capillary electrophoresis separation of food colorants in beverages using diamino moiety functionalized silica nanoparticles as both extractant and pseudo stationary phase. Talanta 132, 366–372 (2015)

    CAS  PubMed  Google Scholar 

  23. K. Yamjala, M.S. Nainar, N.R. Ramisetti, Methods for the analysis of azo dyes employed in food industry: a review. Food Chem. 192, 813–824 (2016)

    CAS  PubMed  Google Scholar 

  24. C. Tatebe, T. Ohtsuki, N. Otsuki, H. Kubota, K. Sato, H. Akiyama, Extraction method and determination of Sudan I present in Sunset Yellow FCF by isocratic high-performance liquid chromatography. Am. J. Anal. Chem. 3, 570–575 (2012)

    Google Scholar 

  25. F. Gosetti, V. Gianotti, S. Polati, M.C. Gennaro, HPLC–MS degradation study of E110 Sunset Yellow FCF in a commercial beverage. J. Chromatogr. A 1090, 107–115 (2005)

    CAS  PubMed  Google Scholar 

  26. H.K. Maleh, K. Cellat, K.A. Aysun Savk, F. Karimi, F. Şen, Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys. 250, 123042 (2020)

    Google Scholar 

  27. H.K. Maleh, O.A. Arotiba, Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci. 560, 208–212 (2020)

    Google Scholar 

  28. H.K. Maleh, F. Karimi, M. Alizadeh, A.L. Sanati, Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec. (2020). https://doi.org/10.1002/tcr.201900092

    Article  Google Scholar 

  29. A. Baghizadeh, H.K. Maleh, Z. Khoshnama, A. Hassankhani, M. Abbasghorbani, A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal. Methods 8, 549–557 (2015)

    Google Scholar 

  30. Z.S. Azad, M.A. Taher, S. Cheraghi, H.K. Maleh, A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact. 13, 1781–1187 (2019)

    Google Scholar 

  31. Y. Ya, C. Jiang, T. Li, J. Liao, Y. Fan, Y. Wei, F. Yan, L. Xie, A zinc oxide nanoflower-based electrochemical sensor for trace detection of sunset yellow. Sensors 17, 545 (2017)

    Google Scholar 

  32. J. Wang, B. Yang, H. Wang, P. Yang, Y. Du, Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode. Anal. Chim. Acta 893, 41–48 (2015)

    CAS  PubMed  Google Scholar 

  33. A. Krolicka, A. Bobrowski, J. Zarebski, I. Tesarowicz, Bismuth film electrodes for adsorptive stripping voltammetric determination of sunset yellow FCF in soft drinks. Electroanalysis 26, 756–765 (2014)

    CAS  Google Scholar 

  34. P.S. Dorraji, F. Jalali, Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine. Food Chem. 227, 73–77 (2017)

    CAS  PubMed  Google Scholar 

  35. K. Zhang, P. Luo, J. Wu, W. Wang, B. Ye, Highly sensitive determination of Sunset Yellow in drink using a poly (l-cysteine) modified glassy carbon electrode. Anal. Methods 5, 5044–5050 (2013)

    CAS  Google Scholar 

  36. F.T. Javazmi, M.S. Nooshabadi, H.K. Maleh, 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Composites B 172, 666–670 (2019)

    Google Scholar 

  37. T. Jamali, H.K. Maleh, M.A. Khalilzadeh, A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT Food Sci. Technol. 57, 679–685 (2014)

    CAS  Google Scholar 

  38. M. Miraki, H.K. Maleh, M. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K. Gupta, Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq. 278, 672–676 (2019)

    CAS  Google Scholar 

  39. H.K. Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W. Maxakato, A. Abbaspourrad, A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. N. J. Chem. 43, 2362–2367 (2019)

    Google Scholar 

  40. S.A.R.A. Tabari, M.A. Khalilzadeh, H. Karimi-Maleh, Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. 811, 84–88 (2018)

    Google Scholar 

  41. X. Qiu, L. Lu, J. Leng, Y. Yu, W. Wang, M. Jiang, L. Bai, An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and Tartrazine. Food Chem. 190, 889–895 (2016)

    CAS  PubMed  Google Scholar 

  42. J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17, 7–14 (2005)

    CAS  Google Scholar 

  43. V. Baia, L.I.N. Tome, C.M.A. Brett, Iron oxide nanoparticle and multiwalled carbon nanotube modified glassy carbon electrodes. Application to levodopa detection. Electroanalysis 30, 1–8 (2018)

    Google Scholar 

  44. T. Zhao, X. Ji, X. Guo, W. Jin, A. Dang, H. Li, T. Li, Preparation and electrochemical property of Fe3O4/MWCNT nanocomposite. Chem. Phys. Lett. 653, 202–206 (2016)

    CAS  Google Scholar 

  45. Y. Wang, L. Wang, T. Tian, G. Yao, X. Hu, C. Yang, Q. Xu, A highly sensitive and automated method for the determination of hypoxanthine based on lab-on-valve approach using Fe3O4/MWCNTs/b-CD modified electrode. Talanta 99, 840–845 (2012)

    CAS  PubMed  Google Scholar 

  46. M. Baghayeri, H. Veisi, Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4–MWCNT nanocomposite. Biosens. Bioelectron. 74, 190–198 (2015)

    CAS  PubMed  Google Scholar 

  47. H. Keypour, S.G. Saremi, H. Veisi, M. Noroozi, Electrochemical determination of citalopram on new Schiff base functionalized magnetic Fe3O4 nanoparticle/MWCNTs modified glassy carbon electrode. J. Electroanal. Chem. 780, 160–168 (2016)

    CAS  Google Scholar 

  48. H.K. Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba, The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci. 554, 603–610 (2019)

    Google Scholar 

  49. J. Yu, Y. Zhang, H. Li, Q. Wan, Y. Li, N. Yang, Electrochemical properties and sensing applications of nanocarbons: a comparative study. Carbon 129, 301–309 (2018)

    CAS  Google Scholar 

  50. A.A. Ensafi, A.R. Allafchian, B. Rezaei, Multiwall carbon nanotubes decorated with FeCr2O4, a new selective electrochemical sensor for amoxicillin determination. J. Nanopart. Res. 14, 1244 (2012)

    Google Scholar 

  51. M. Arvand, Y. Parhizi, S.H. Mirfathi, Simultaneous voltammetric determination of synthetic colorants in foods using a magnetic core–shell Fe3O4@SiO2/MWCNTs nanocomposite modified carbon paste electrode. Food Anal. Methods 9, 63–875 (2016)

    Google Scholar 

  52. M. Arvand, Z. Erfanifar, M.S. Ardaki, A new core@shell silica-coated magnetic molecular imprinted nanoparticles for selective detection of sunset yellow in food samples. Food Anal. Methods 10, 2593–2606 (2017)

    Google Scholar 

  53. G.V. Prasad, T.M. Reddy, A.L. Narayana, O.M. Hussain, P. Shaikshavali, T.V. Gopal, P. Gopal, A facile synthesis of Fe3O4-Gr nanocomposite and its effective use as electrochemical sensor for the determination of dopamine and as anode material in lithium-ion batteries. Sens. Actuators A 293, 87–100 (2019)

    Google Scholar 

  54. T. Zhao, X. Ji, H. Liu, P. Yao, W. Liu, C. Xiong, T. Li, C. Wang, Growth of well-aligned carbon nanotubes with different shapes. Appl. Surf. Sci. 357, 2136–2140 (2015)

    CAS  Google Scholar 

  55. C. Ma, W. Lu, H. Zheng, Y. Wang, Y. Luo, Study on preparation of nano-sized carbon/ferroferric oxide composite material. Inorg. Chem. Ind. 41(4), 24–27 (2009)

    CAS  Google Scholar 

  56. B. Fang, W. Zhang, S. Wei, N. Zhang, G. Wang, Preparation of CNTs/Fe3O4 modified electrode under the magnetic field and the electrocatalytic determination of dopamine. J. Chizhou Coll. 21(5), 51–53 (2007)

    Google Scholar 

  57. M.R. Shahmiri, A. Bahari, H.K. Maleh, R. Hosseinzadeh, N. Mirni, Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens. Actuators B 177, 70–77 (2013)

    CAS  Google Scholar 

  58. H.K. Maleh, A.F. Shojaei, F. Karimi, K. Tabatabaeian, S. Shakeri, R. Moradi, Simultaneous determination of 6-mercaptopurine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methyl imidazolium hexafluorophosphate. Biosens. Bioelectron. 86, 879–884 (2016)

    Google Scholar 

  59. Q. Zhang, M. Zhu, Q. Zhang, Y. Li, H. Wang, The formation of magnetite nanoparticles on the sidewalls of multi-walled carbon nanotubes. Compos. Sci. Technol. 69, 633–638 (2009)

    CAS  Google Scholar 

  60. X. Wang, Z. Zhao, J. Qu, Z. Wang, J. Qiu, Fabrication and characterization of magnetic Fe3O4–CNT composites. J. Phys. Chem. Solids 71, 673–676 (2010)

    CAS  Google Scholar 

  61. A.L. Narayana, M. Dhananjaya, N.G. Prakash, O.M. Hussain, A. Mauger, C.M. Julien, Li2TiO3/graphene and Li2TiO3/CNT composites as anodes for high power Li-ion batteries. ChemistrySelect 3, 9150–9158 (2018)

    Google Scholar 

  62. T. Madrakian, S. Maleki, M. Heidari, A. Afkhami, An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples. Mater. Sci. Eng. C 63, 637–643 (2016)

    CAS  Google Scholar 

  63. P. Shaikshavali, T.M. Reddy, V.N. Palakollu, R. Karpoormath, Y. Subba Rao, G.V. Prasad, T.V. Gopal, P. Gopal, Multi-walled carbon nanotubes supported CuO–Au hybrid nanocomposite for the effective application towards the electrochemical determination of Acetaminophen and 4-Aminophenol. Synth. Met. 252, 29–39 (2019)

    CAS  Google Scholar 

  64. P. Gopal, T.M. Reddy, V.N. Palakollu, Development, characterization, and application of a carbon-based nanomaterial composite as an electrochemical sensor for monitoring natural antioxidant (gallic acid) in beverages. ChemistrySelect 2, 3804–3811 (2017)

    CAS  Google Scholar 

  65. X. Ye, Y. Du, D. Lu, C. Wang, Fabrication of β-cyclodextrin-coated poly (diallyl dimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine. Anal. Chim. Acta 779, 22–34 (2013)

    CAS  PubMed  Google Scholar 

  66. P.V. Narayana, T.M. Reddy, P. Gopal, M.M. Reddy, G.R.K. Naidu, Electrocatalytic boost up of epinephrine and its simultaneous resolution in the presence of serotonin and folic acid at poly(serine)/multi-walled carbon nanotubes composite modified electrode: a voltammetric study. Mater. Sci. Eng. C 56, 57–65 (2015)

    CAS  Google Scholar 

  67. P. Shaikshavali, T.M. Reddy, G.V. Prasad, P. Gopal, A highly selective electrochemical sensor based on multi-walled carbon nanotubes/poly (Evans blue) composite for the determination of l-dopa in presence of 5-HT and folic acid: a voltammetric investigation. J. Iran. Chem. Soc. 15, 1831–1841 (2018)

    CAS  Google Scholar 

  68. E. Laviron, Adsorption, autoinhibition, and autocatalysis in polarography and linear potentials sweep voltammetry. J. Electroanal. Chem. Interracial Electrochem. 52, 355–393 (1974)

    CAS  Google Scholar 

  69. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 101, 19–28 (1979)

    CAS  Google Scholar 

  70. P. Raghu, T.M. Reddy, K. Reddaiah, B.E.K. Swamy, M. Sreedhar, Acetylcholinesterase based biosensor for monitoring of Malathion and Acephate in food samples: a voltammetric study. Food Chem. 142, 188–196 (2014)

    CAS  PubMed  Google Scholar 

  71. T.V. Gopal, T.M. Reddy, G.V. Prasad, P. Shaikshavalli, P. Gopal, Rapid and sensitive electrochemical monitoring of paracetamol and its simultaneous resolution in presence of epinephrine and tyrosine at GO/poly(Val) composite modified carbon paste electrode. Colloids Surf. A 545, 117–120 (2018)

    Google Scholar 

  72. A. Khodadadi, E.F. Mirzaei, H.K. Maleh, A. Abbaspourrad, S. Agarwal, V.K. Gupta, A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens. Actuators B 284, 568–574 (2019)

    CAS  Google Scholar 

  73. M. Bijad, H.K. Maleh, M.A. Khalilzadeh, Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods 6, 1639–1647 (2013)

    Google Scholar 

  74. T. Gan, J. Sun, W. Meng, L. Song, Y. Zhang, Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colorants in food. Food Chem. 141, 3731–3737 (2013)

    CAS  PubMed  Google Scholar 

  75. Q. He, J. Liu, X. Liu, Y. Xia, G. Li, P. Deng, D. Chen, Novel electrochemical sensors based on cuprous oxide-electrochemically reduced graphene oxide nanocomposites modified electrode toward sensitive detection of sunset yellow. Molecules 23, 2130 (2018)

    PubMed Central  Google Scholar 

  76. L. Zhao, F. Zhao, B. Zeng, Preparation and application of sunset yellow imprinted ionic liquid polymer ionic liquid functionalized graphene composite film coated glassy carbon electrodes. Electrochim. Acta 115, 247–254 (2014)

    CAS  Google Scholar 

  77. J. Li, X. Wang, H. Duan, Y. Wang, Y. Bu, C. Luo, Based on magnetic graphene oxide highly sensitive and selective imprinted sensor for determination of sunset yellow. Talanta 147, 169–176 (2016)

    CAS  PubMed  Google Scholar 

  78. M. Motahharinia, H.A. Zamani, H.K. Maleh, A sensitive electroanalytical sensor amplified with Pd–ZnO nanoparticle for determination of Sunset Yellow in real samples. Eurasian Chem. Commun. 2, 760–770 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors P. Shaikshavali is grateful to the University Grants Commission (UGC), New Delhi for providing financial support through the Basic Scientific Research (BSR) Fellowship under Letter No. F. 25-1/2013-14 (BSR)/7-187/2007. The authors are also thankful to TPF Nanomission at Center for Nano and Soft Matter Sciences, Bengaluru and Vellore Institute of Technology (VIT), Vellore, India for providing FE-SEM, XRD, TEM and EDS facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Madhusudana Reddy.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikshavali, P., Reddy, T.M., Lakshmi Narayana, A. et al. A powerful electrochemical sensor based on Fe3O4 nanoparticles-multiwalled carbon nanotubes hybrid for the effective monitoring of sunset yellow in soft drinks. Food Measure 14, 3319–3332 (2020). https://doi.org/10.1007/s11694-020-00569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00569-z

Keywords

Navigation