Skip to main content
Log in

Effects of Bt transgenic crops on soil ecosystems: a review of a ten-year research in China

  • Review
  • Published:
Frontiers of Agriculture in China

Abstract

Bacillus thuringiensis (Bt) transgenic cotton is the unique Bt transgenic crop planted on a large scale in China, and its commercialized varieties and hectareage had increased rapidly in China during the past decade (1997–2006) with broad geographic distribution for the economic, environmental, and health benefits. In 2004, the planting area of Bt transgenic cotton in China ranked first worldwide with up to 370 × 106 hm2. In addition, Bt transgenic rice varieties in field tests have been close to approval for commercialization. However, ecological risks, a complex issue of Bt transgenic crops on soil ecosystem is urgently faced in China due to more than 60 varieties transferred single or bivalent Bt genes grown under diverse geographic regions. Two main pathways, biomass incorporation and root exudates, are involved in the effects of Bt transgenic crops on soil ecosystems. In this paper, the research results in recent years in China involved in the effects of Bt transgenic crops (Bt transgenic cottons and rice) on soil ecosystems were summarized with special attentions paid to the release and persistence of Bt toxins, and the toxicology to microorganisms, as well as the change of soil biochemical properties in soils where Bt transgenic crops were planted or incubated with their biomass. In addition, the complexity and current research defaults of ecological risk evaluation of Bt transgenic crops in China were highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angle J S (1994). Release of transgenic plants: biodiversity and population-level considerations. Molecular Ecology, 3: 45–50

    Article  Google Scholar 

  • Bai Y Y, Jiang M X, Cheng J A (2007). Impacts of environmental factors on degradation of Cry1Ab insecticial protein in leaf-blade powders of transgenic Bt rice. Agricultural Sciences in China, 6(2): 167–174 (in Chinese)

    Article  CAS  Google Scholar 

  • Bai Y Y, Jiang M X, Cheng J A, Shen H M, Yang P, Chen Z X, Jiang Y H, Shu Q Y (2004). Degradation of Cry1Ab toxin protein expressed by Bt transgenic rice in paddy soils. Chinese J Rice Science, 18(3): 255–261 (in Chinese)

    CAS  Google Scholar 

  • Brookes G, Barfoot P (2006). Global impact of biotech crops: socioeconomic and environmental effects in the first ten years of commercial use. AgBioForum, 9(3): 139–151

    Google Scholar 

  • Bruinsma M, Kowalchuk G A, van Veen J A (2003). Effects of genetically modified plants on microbial communities and processes in soil. Biology and Fertility of Soils, 37: 329–337

    Google Scholar 

  • Bruns H A, Abel C A (2003). Nitrogen fertility effects on Bt-andotoxin and nitrogen concentrations of maize during early growth. Agron J, 95: 207–211

    Google Scholar 

  • Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Fabiani A, Landi S, Santomassimo F, Pietrangeli B, Nuti M P, Miclaus N, Giovannetti M (2005). Impact of Bt maize on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Applied and Environmental Microbiology, 71: 6719–6729

    Article  PubMed  CAS  Google Scholar 

  • Crecchio C, Stotzky G (1998). Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. kurstaki bound to humic acids from soil. Soil Biology and Biochemistry, 30: 463–470

    Article  CAS  Google Scholar 

  • Crecchio C, Stotzky G (2001). Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp. kurstaki bound to complexes of montmorillonite-humic acids-Al hydroxypolymers. Soil Biology and Biochemistry, 33: 573–581

    Article  CAS  Google Scholar 

  • Cui J J, Xia J Y (1999). Studies on the resistance dynamic of the Bt transgenic cotton on cotton bollworm. Acta Gossypii Sinica, 11: 141–146 (in Chinese)

    Google Scholar 

  • Donegan K K, Palm C J, Fieland V J (1995). Changes in levels, species, and DNA fingerprints of soil microorganism associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Applied Soil Ecology, 2(2): 111–124

    Article  Google Scholar 

  • Donegan K K, Seidler R J, Doyle J D, Porteous L A, Digiovanni G, Widmer F, Watrud L S (1999). A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meloloti: Effects on soil ecosystems. J Applied Ecol, 36: 920–936

    Article  Google Scholar 

  • Dong Z Q, Zhao M, Shu W H, Zhang B M, Hao H J (2006). The subcellular localization of the Bt crystal protein in transgenic Bt cotton cell. Acta Agronomica Sinica, 32(12): 1924–1926 (in Chinese)

    CAS  Google Scholar 

  • Escher N, Kach B, Nentwig W (2000). Decomposition of transgenic Bacillus thuringiensis maize by microorganisms and woodlice Porcello scaber (Crustacea:Isopoda). Bas Appl Ecol, 1, 161–169

    Article  Google Scholar 

  • Ferry N, Edwards M G, Gatehouse J, Capell T, Christou P, Gatehouse A M R (2006). Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Research, 15: 13–19

    Article  PubMed  CAS  Google Scholar 

  • Firbank L, Lonsdale M, Poppy G (2005). Reassessing the environmental risks of GM crops. Nature Biotechnology, 12: 1475–1476

    Article  CAS  Google Scholar 

  • Flores S, Saxena D, Stotzky G (2005). Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biology & Biochemistry, 37: 1073–1082

    Article  CAS  Google Scholar 

  • Grayston S J, Wang S, Campbell C D (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry, 30: 369–378

    Article  CAS  Google Scholar 

  • Hails R S (2000). Genetically modified plants-the debate continues. Trends in Ecology and Evolution, 15: 14–18

    Article  PubMed  Google Scholar 

  • Heritage J (2004). The fate of transgenes in the human gut. Nature Biotechnology, 22: 170–173

    Article  PubMed  CAS  Google Scholar 

  • Hilbeck A, Moar, W J, Pusztai-Carey M, Filippini A, Bigler F (1998). Toxicityof Bacillus thuringensis Cry1Ab toxin to the predator Chrysoperla carnea. Environmental Entomology, 27: 1255–1263

    CAS  Google Scholar 

  • Huang J K, Hu F R, Pray C, Qiao F B, Rozelle S (2003). Biotechnology as an alternative to chemical pesticides: a case study of Bt cotton in China. Agricultural Economics, 29: 55–67

    Article  Google Scholar 

  • Huang J K, Rozelle S, Pray C, Wang Q F (2002). Plant biotechnology in China. Nature, 295: 674–676

    CAS  Google Scholar 

  • Jepson, P C, Croft, B A, Pratt, G E (1994). Test systems to determine the ecological risks posed by toxin release from Bacillus thuringiensis genes in crop plants. Molecular Ecology, 3: 81–89

    Article  Google Scholar 

  • Li Y H, Zhang Y J, Wu K M, Yuan G H, Guo Y Y (2005). Degradation dynamics of Cry1Ac insecticidal protein in leaves of Bt cotton under different environments. Scientia Agricultura Sinica, 38(4): 714–718 (in Chinese)

    CAS  Google Scholar 

  • Liu B, Zeng Q W, Yan F M, Xu H G, Xu C R (2005). Effects of transgenic plants on soil microorganisms. Plant and Soil, 271: 1–13

    Article  CAS  Google Scholar 

  • Liu W K, Du L F (2007). Effects of P fertilization on growth of Bt transgenic cotton seedlings. China Cotton, (8): 14–15 (in Chinese)

  • Liu W K, Du L F (2008). Interactions between Bt transgenic crops and arbuscular mycorrhizal fungi: a new urgent soil ecology issue in agroecosystems. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 58(2): 187–192

    Article  Google Scholar 

  • Losey J E, Rayor L S, Carter M E (1999). Transgenic pollen harms monarch larvae. Nature, 399: 214

    Article  PubMed  CAS  Google Scholar 

  • Netherwood T, Matin-Orue S M, O’Donnell A G (2004). Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nature Biotechnology, 22: 204–209

    Article  PubMed  CAS  Google Scholar 

  • Palm C J, Schaller D L, Donegan K K, Seidler R J (1996). Persistence in soil of transgenic plant produced Bacillus thuringiensis var. kurstaki δ-endotoxin. Canadian J Microbiology, 42: 1258–1262

    CAS  Google Scholar 

  • Rui Y K (2005). Dynamics of Bt toxin and plant hormones in rhizosphere system of transgenic insecticidal cotton (Gossy posium L.). Letters in Biotechnology, 16(5): 515–517 (in Chinese)

    CAS  Google Scholar 

  • Rui Y K, Yi G X, Guo J, Guo X, Luo Y B, Wang B M, Li Z H (2007). Transgenic cotton could safely be grown since CpTI toxin rapidly degrades in the rhizosphere soil. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 57(2): 122–125

    Article  CAS  Google Scholar 

  • Rui Y K, Yi G X, Zhao J, Wang B M, Li Z H, Zhai Z X, He Z P, Li Q X (2005). Changes of Bt toxin in the rhizosphere of transgenic Bt cotton and its influence on soil functional bacteria. World Journal of Microbiology & Biotechnology, 21: 1279–1284

    Article  CAS  Google Scholar 

  • Sachs E S, Benedict J H, Stelly D M, Taylor J F, Altman D W, Berberich S A, Davis S K (1998). Expression and segregation of genes encoding CryIA insecticidal proteins in cotton. Crop Science, 38: 1–11

    CAS  Google Scholar 

  • Saxena D, Flores S, Stotzky G (1999). Insecticidal toxin in root exudates from Bt corn. Nature, 402: 480

    PubMed  CAS  Google Scholar 

  • Saxena D, Stotzky G (2000). Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiological Ecology, 33: 35–39

    Article  CAS  Google Scholar 

  • Saxena D, Stotzky G (2001)a. Bacillus thuringiensis toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biology and Biochemistry, 33: 1225–1230

    Article  CAS  Google Scholar 

  • Saxena D, Stotzky G (2001)b. Bt corn has a higher lignin content than non-Bt corn. Am J Bot, 88: 1704–1706

    Article  CAS  Google Scholar 

  • Saxena D, Stotzky G (2001)c. Bt toxin uptake from soil by plants. Nature Biotechnology, 19: 199

    Article  PubMed  CAS  Google Scholar 

  • Saxena D, Stotzky G (2002). Bt toxin is not taken up from soil or hydroponic by maize, radish, or turnip. Plant and Soil, 239: 165–172

    Article  CAS  Google Scholar 

  • Shen R F, Cai H, Gong W H (2006). Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil. Plant and Soil, 285: 149–159

    Article  CAS  Google Scholar 

  • Sims S R, Holden L R (1996). Insect bioassay for determining soil degradation of Bacillus thuringiensis var. kurstaki CryIA (b) protein in corn tissues. Environ Entomology, 25: 659–664

    Google Scholar 

  • Sims S R, Ream J E (1997). Soil inactivation of the Bacillus thuringiensis subsp. kurstaki CryIIA insecticidal protein within transgenic cotton tissue: laboratory microcosm and field studies. Journal of Agriculture and Food Chemistry, 45: 1502–1505

    Article  CAS  Google Scholar 

  • Snow A, Palma P M (1997). Commercialization of transgenic plants: potential ecological risks. BioScience, 47: 86–96

    Article  Google Scholar 

  • Stotzky G (2000). Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. J Environmental Quality, 29: 691–705

    Article  CAS  Google Scholar 

  • Sun C X, Chen L J, Wu Z J (2005). Bt toxin distribution in transgenic Bt cotton and soil system. Chinese Journal of Applied Ecology, 16(9): 1765–1768 (in Chinese)

    PubMed  CAS  Google Scholar 

  • Sun C X, Chen L J, Wu Z J, Wu Q, Chen C R (2004). Photosynthetic characters and Bt toxin content of different transgenic Bt cotton. Chinese J of Applied Ecology, 15(10): 1878–1882 (in Chinese)

    CAS  Google Scholar 

  • Sun C X, Chen L J, Wu Z J, Zhou L K (2007)a. Soil persistence of Bacillus thuringiensis (Bt) toxin from transgenic Bt cotton tissues and its effect on soil enzyme activities. Biology and Fertility of Soils, 43: 617–620

    Article  Google Scholar 

  • Sun C X, Zhang L L, Wu Q, Miao L, Wang G W, Li S J (2007)b. Nitrogen metabolism of transgenic Bt cotton and transgenic Bt CpTI cotton at seedling stage. Chinese Journal of Ecology, 26(2): 187–191 (in Chinese)

    CAS  Google Scholar 

  • Tabashnik B E (1994). Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology, 39: 47–49

    Article  Google Scholar 

  • Tapp H, Stotzky G (1995). Insecticidal activity of the toxins from Bacillus thuringiensis subspecies kurstaki and tenebrionis adsorbed and bound on pure and soil clays. Appl Environ Microbiol, 61(5): 1786–1790

    PubMed  CAS  Google Scholar 

  • Tapp H, Stotzky G (1998). Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biology and Biochemistry, 30: 471–476

    Article  CAS  Google Scholar 

  • Traore S B, Carlson R E, Pilcher C D (2000). Bt and non-Bt maize growth and development as affected by temperature and drought stress. Agron J, 92: 1027–1035

    Google Scholar 

  • Turrini A, Sbrana C, Nuti M P, Pietrangeli B M, Giovannetti M (2005). Development of a model system to assess the impact of genetically modified maize and aubergine plants on arbuscular mycorrhizal fungi. Plant and Soil, 1(2): 69–75

    Article  Google Scholar 

  • Wang H Y, Ye Q F, Wang W, Wu L C, Wu W X (2006). Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil. Environmental Pollution, 143: 449–455

    Article  PubMed  CAS  Google Scholar 

  • Wang Y Q, Johnston S (2007). The status of GM rice R&D in China. Nature Biotechnology, 25(7): 717–718

    Article  PubMed  CAS  Google Scholar 

  • Watrud L S, Seidler R J, Huang PM, Adriano D C, Logan T J, Checkai R T (1998). Nontarget ecological effects of plant, microbial and chemical introductions to terrestrial system. In: Huang P M, ed. Soil Chemistry and Ecosystem Health. Madison, Special Publication, Vol 52. Wisconsin: Soil Science Society of America, 313–340

    Google Scholar 

  • Wolfenbarger L L, Phifer P R (2000). The ecological risks and benefits of genetically engineered plants. Science, 290: 2088–2093

    Article  PubMed  CAS  Google Scholar 

  • Wu L C, Li X F, Ye Q F, Wang H Y (2004). Expression and root exudation of Cry1Ab toxin protein in cry1Ab transgenic rice and its residue in rhizosphere soil. Environmental Science, 25(5): 116–121

    Google Scholar 

  • Wu W X, Ye Q F, Min H (2004)a. Effect of straws from Bt-transgenic rice on selected biological activities in water-flooded soil. European Journal of Soil Biology, 40: 15–22

    Article  Google Scholar 

  • Wu W X, Ye Q F, Min H, Duan X J, Jin W M (2004)b. Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biol Biochem, 36: 289–295

    Article  CAS  Google Scholar 

  • Zhang B H, Liu F, Yao C B, Wang K B (2000). Recent progress in cotton biotechnology and genetic engineering in China. Current Science, 79 (1): 37–44

    CAS  Google Scholar 

  • Zhang B H, Wang Q L (2001). Bt-cotton in China. Current Science, 81 (4): 332–333

    Google Scholar 

  • Zhang L L, Wu Z J, Chen L J, Sun C X (2006). Effects of transgenic cotton planting on soil hydrolase activity. Chinese Journal of Ecology, 25(11): 1348–1351 (in Chinese)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenke Liu.

About this article

Cite this article

Liu, W. Effects of Bt transgenic crops on soil ecosystems: a review of a ten-year research in China. Front. Agric. China 3, 190–198 (2009). https://doi.org/10.1007/s11703-009-0027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-009-0027-9

Keywords

Navigation