Skip to main content
Log in

Thermal decomposition of poly(ethylene terephthalate)/mesoporous molecular sieve composites

  • Research Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

The nonisothermal and isothermal degradation processes of poly(ethylene terephthalate)/mesoporous molecular sieve (PET/MMS) composites synthesized by insitu polymerization were studied by using thermogravimetric analysis in nitrogen. The nonisothermal degradation of the composite is found to be the first-order reaction. An isoconversional procedure developed by Ozawa is used to calculate the apparent activation energy (E), which is an average value of about 260 kJ/mol with the weight conversion from 0% to 30%, and is higher than that of neat PET. Isothermal degradation results are confirmed with the nonisothermal process, in which PET/MMS showed higher thermal stability than neat PET. The polymer in mesoporous channels has more stability due to the protection of the inorganic pore-wall. These results indicate that mesoporous MMS in PET/MMS composites improve the stability of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism. Nature, 1992, 359: 710–712

    Article  CAS  Google Scholar 

  2. Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K T, Chu C W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc, 1992, 114: 10834–10843

    Article  CAS  Google Scholar 

  3. Chen J, Li Q, Ding H, Pang W, Xu R. Infrared Study on the Dehydroxylation of C60-Loaded MCM-41. Langmuir, 1997, 13: 2050–2054

    Article  CAS  Google Scholar 

  4. Kumar D, Kamble V S, Gupta N M. The role of nanosize particles of Uranium Oxide in the adsorption/reaction of methanol over U3O8/MCM-48: FTIR Study. Catal Lett, 2003, 88: 175–181

    Article  CAS  Google Scholar 

  5. Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host. Science, 1994, 264: 1757–1759

    Article  CAS  Google Scholar 

  6. Kageyama K, Tamazawa J, Aida T. Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science, 1999, 285: 2113–2115

    Article  CAS  Google Scholar 

  7. Llewellyn P L, Ciesla U, Decher H, Stadler R, Schuth F, Unger K K. MCM-41 and related materials as media for controlled polymerization process. Stud Surf Catal, 1994, 84: 2013–2020

    CAS  Google Scholar 

  8. Frisch H L, Mark J E. Nanocomposites prepared by threading polymer chains through Zeolites, mesoporous silica, or silica nanotubes. Chem Mater, 1996, 8: 1735–1738

    Article  CAS  Google Scholar 

  9. Mollers K, Bein T, Fischer R X. Entrapment of PMMA polymer in micro-and mesoporous Materials. Chem Mater, 1998, 10: 1841–1845

    Article  Google Scholar 

  10. Moller K, Bein T, Fischer R X. Synthesis of ordered mesoporous methacrylate hybrid systems: hosts for molecular polymer composites. Chem Mater, 1999, 11: 665–673

    Article  CAS  Google Scholar 

  11. Lehmus P, Rieger B. Nanoscale polymerization reactors for polymer fibers. Science, 1999, 285: 2081–2082

    Article  CAS  Google Scholar 

  12. MacLachlan M J, Manners I, Ozin G A. New (Inter) faces: polymers and inorganic materials. Adv Mater, 2000, 12: 675–681

    Article  CAS  Google Scholar 

  13. Spange S. Insulated nanowire bundles through consecutive template synthesis. Angew Chem Int Ed Engl, 2003, 42: 4430–4432

    Article  CAS  Google Scholar 

  14. Nakajima H, Yamada K, Iseki Y, Hosoda S, Hanai A, Oumi Y, Teranishi T, Sano T. Preparation and characterization of polypropylene/mesoporous silica nanocomposites with confined polypropylene. J Polym Sci, Part B: Polym Phys, 2003, 41: 3324–3332

    Article  CAS  Google Scholar 

  15. He J, Shen Y, Yang J, Evans D, Duan X. Nanocomposites structure based on silylated MCM-48 and poly(vinyl acetate). Chem Mater, 2003, 15: 3894–3902

    Article  CAS  Google Scholar 

  16. Wu G, Run M T, Zhang D Y. CP 2 004 100 740 055

  17. Run M T, Wu S Z, Wu G. Ultrasonic synthesis of mesoporous molecular sieve. Microporous mesoporous mater, 2004, 74: 37–47

    Article  CAS  Google Scholar 

  18. Chen J H, Li C R. Thermal Analysis and Its Application. Beijing: Science Press, 1985 (in Chinese)

    Google Scholar 

  19. Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201: 68–69

    Article  CAS  Google Scholar 

  20. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan, 1965, 38: 1881–1886

    Article  CAS  Google Scholar 

  21. Nam J, Seferis J C. Generalized composite degradation kinetics for polymeric systems under isothermal and nonisothermal conditions. J Polym Sci, Part B: Polym Phys, 1992, 30: 455–463

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Run Mingtao or Wu Gang.

Additional information

Translated from Polymer Materials Science and Engineering, 2006, 22(1): 64–67 [译自: 高分子材料与工程]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Run, M., Zhang, D., Wu, S. et al. Thermal decomposition of poly(ethylene terephthalate)/mesoporous molecular sieve composites. Front. Chem. Eng. China 1, 50–54 (2007). https://doi.org/10.1007/s11705-007-0010-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-007-0010-z

Keywords

Navigation