Skip to main content
Log in

Recent advances in the catalytic pyrolysis of biomass

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Biomass is considered as a renewable and alternative resource for the production of fuels and chemicals, since it is the only carbon and hydrogen containing resource that we can find in the world except for fossil resources, capable of being converted to hydrocarbons. The pyrolytic liquefaction of biomass is a promising way to convert biomass to useful products. This paper briefly surveys the present status of the direct catalytic pyrolysis for the liquefaction of biomass. The direct use of catalysts could decrease the pyrolysis temperature, increase the conversion of biomass and the yield of bio-oil, and change the distribution of the pyrolytic liquid products then improve the quality of the bio-oil obtained. The fact that biomass is in solid state present great challenges for its conversion and for the effective use of catalysts due to the bad heat transfer characteristics and bad mass transfer properties. These barriers appeal for the development of a new catalyst and new catalytic process as well as the integration of both. Process design and process intensification are of significant importance in the catalytic conversion of biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rostrup-Nielsen J. Chemistry: making fuels from biomass. Science, 2005, 308: 1421–1422

    Article  CAS  Google Scholar 

  2. Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 2006, 314: 1598–1600

    Article  CAS  Google Scholar 

  3. Dodds D, Gross R. Chemicals from biomass. Science, 2007, 318: 1250–1251

    Article  CAS  Google Scholar 

  4. Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energ Convers Manage, 2004, 45: 651–671

    Article  CAS  Google Scholar 

  5. Bridgwater A, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Org Geochem, 1999, 30: 1479–1493

    Article  CAS  Google Scholar 

  6. Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem Rev, 2007, 107: 2411–2502

    Article  CAS  Google Scholar 

  7. Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N. Bio-syngas production from biomass catalytic gasification. Energ Convers Manage, 2007, 48: 1132–1139

    Article  CAS  Google Scholar 

  8. Goyal H, Seal D, Saxena R. Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev, 2008, 12: 504–517

    Article  CAS  Google Scholar 

  9. Bridgwater A. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today, 1996, 29: 285–295

    Article  CAS  Google Scholar 

  10. Zhang Q, Chang J, Wang T, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energ Convers Manage, 2007, 48: 87–92

    Article  CAS  Google Scholar 

  11. Samolada M, Papafotica A, Vasalos I. Catalyst evaluation for catalytic biomass pyrolysis. Energy Fuel, 2000, 14: 1161–1167

    Article  CAS  Google Scholar 

  12. Li J, Yan R, Xiao B, Liang D, Lee D. Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components. Energy Fuel, 2008, 22: 16–23

    Article  Google Scholar 

  13. Amarasekara A, Ebede C. Zinc chloride mediated degradation of cellulose at 200°C and identification of the products. Biores Technol, 2009, 100: 5301–5304

    Article  CAS  Google Scholar 

  14. Helsen L, Van den Bulck E. Kinetics of the low-temperature pyrolysis of chromated copper arsenate-treated wood. J Anal Appl pyrol, 2000, 53: 51–79

    Article  CAS  Google Scholar 

  15. Szabo P, Varhegyi G, Till F, Faix O. Thermogravimetric/mass spectrometric characterization of two energy crops Arundo donax and Miscanthus sinensis. J Anal Appl pyrol, 1996, 36: 179–190

    Article  CAS  Google Scholar 

  16. Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review. Biores Technol, 2001, 79: 277–299

    Article  CAS  Google Scholar 

  17. Pindoria R, Megaritis A, Herod A, Kandiyoti R. A two-stage fixedbed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature pressure and catalyst ageing time on product characteristics. Fuel, 1998, 77: 1715–1726

    Article  CAS  Google Scholar 

  18. Adam J, Blazso M, Meszaros E, Stocker M, Nilsen M, Bouzga A, Hustad J, Gronli M, Oye G. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel, 2005, 84: 1494–1502

    CAS  Google Scholar 

  19. Qi W, Hu C, Li G, Guo L, Yang Y, Luo J, Miao X, Du Y. Catalytic pyrolysis of several kinds of bamboos over zeolite NaY. Green Chem, 2006, 8: 183–190

    Article  CAS  Google Scholar 

  20. Liu W, Hu C, Yang Y, Zhu L, Tong D. Effect of the interference instant of zeolite HY catalyst on the pyrolysis of pubescens. Chinese J Chem Eng, 2010, 18: 351–354

    Article  CAS  Google Scholar 

  21. Onay O. Fast and catalytic pyrolysis of pistacia khinjuk seed in a well-swept fixed bed reactor. Fuel, 2007, 86: 1452–1460

    Article  CAS  Google Scholar 

  22. Ateş F, Pűtűn A, Pűtűn E. Fixed bed pyrolysis of euphorbia rigida with different catalysts. Energ Convers Manage, 2005, 46: 421–432

    Article  Google Scholar 

  23. Ateş F, Pűtűn A, Pűtűn E. Pyrolysis of two different biomass samples in a fixed-bed reactor combined with two different catalysts. Fuel, 2006, 85: 1851–1859

    Article  Google Scholar 

  24. Pűtűn E, Uzun B, Pűtűn A. Fixed-bed catalytic pyrolysis of cotton-seed cake: effects of pyrolysis temperature natural zeolite content and sweeping gas flow rate. Biores Technol, 2006, 97: 701–710

    Article  Google Scholar 

  25. Dobele G, Rossinskaja G, Dizhbite T, Telysheva G, Meier D, Faix O. Application of catalysts for obtaining 6-anhydrosaccharides from cellulose and wood by fast pyrolysis. J Anal Appl pyrol, 2005, 74: 401–405

    Article  CAS  Google Scholar 

  26. Fabbri D, Torri C, Baravelli V. Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: an analytical study. J Anal Appl pyrol, 2007, 80: 24–29

    Article  CAS  Google Scholar 

  27. Torri C, Lesci I, Fabbri D. Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. J Anal Appl pyrol, 2009, 85: 192–196

    Article  CAS  Google Scholar 

  28. Di Blasi C, Branca C, Galgano A. Products and global weight loss rates of wood decomposition catalyzed by zinc chloride. Energy Fuel, 2008, 22: 663–670

    Article  Google Scholar 

  29. Lu Q, Xiong W, Li W, Guo Q, Zhu X. Catalytic pyrolysis of cellulose with sulfated metal oxides: a promising method for obtaining high yield of light furan compounds. Biores Technol, 2009, 100: 4871–4876

    Article  CAS  Google Scholar 

  30. Yang Y, Xiang X, Luo J, Qi W, Yan H, Li G, Hu C. Pyrolysis of glucose over two amphoteric metal oxides. Chem Res Chinese U, 2009, 25: 234–238 (in Chinese)

    CAS  Google Scholar 

  31. Chen M, Wang J, Zhang M, Zhu X, Min F, Tan Z. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J Anal Appl pyrol, 2008, 82: 145–150

    Article  CAS  Google Scholar 

  32. Lappas A, Samolada M, Iatridis D, Voutetakis S, Vasalos I. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel, 2002, 81: 2087–2095

    Article  CAS  Google Scholar 

  33. Zhang H, Xiao R, Huang H, Xiao G. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Biores Technol, 2009, 100: 1428–1434

    Article  CAS  Google Scholar 

  34. Pan P, Hu C, Yang W, Li Y, Dong L, Zhu L, Tong D, Qing R, Fan Y. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp, residue for renewable bio-oils. Biores Technol, 2010, 101: 4593–4599

    Article  CAS  Google Scholar 

  35. Lu Q, Tang Z, Zhang Y, Zhu X. Catalytic upgrading of biomass fast pyrolysis vapors with Pd/SBA-15 catalysts. Ind Eng Chem Res, 2010, 49: 2573–2580

    Article  CAS  Google Scholar 

  36. Aho A, Kumar N, Eranen K, Salmi T, Hupa M, Murzin D. Catalytic pyrolysis of biomass in a fluidized bed reactor: influence of the acidity of H-Beta zeolite. Process Saf Environ, 2007, 85: 473–480

    Article  CAS  Google Scholar 

  37. Liu W, Hu C, Yang Y, Tong D, Li G, Zhu L. Influence of ZSM-5 zeolite on the pyrolytic intermediates from the co-pyrolysis of pubescens and LDPE. Energ Convers Manage, 2010, 51: 1025–1032

    Article  CAS  Google Scholar 

  38. Demiral I, Sensöz S. The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse). Biores Technol, 2008, 99: 8002–8007

    Article  CAS  Google Scholar 

  39. Williams P, Horne P. The influence of catalyst regeneration on the composition of zeolite-upgraded biomass pyrolysis oils. Fuel, 1995, 74: 1839–1851

    Article  CAS  Google Scholar 

  40. Horne P, Williams P. Upgrading of biomass-derived pyrolytic vapours over zeolite ZSM-5 catalyst: effect of catalyst dilution on product yields. Fuel, 1996, 75: 1043–1050

    Article  CAS  Google Scholar 

  41. Vitolo S, Bresci B, Seggiani M, Gallo M. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel, 2001, 80: 17–26

    Article  CAS  Google Scholar 

  42. Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energ Combus, 2008, 34: 47–90

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwei Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Yang, Y., Luo, J. et al. Recent advances in the catalytic pyrolysis of biomass. Front. Chem. Sci. Eng. 5, 188–193 (2011). https://doi.org/10.1007/s11705-010-1015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-010-1015-6

Keywords

Navigation