Skip to main content
Log in

Advancement in materials for energy-saving lighting devices

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

This review provides a comprehensive account of energy efficient lighting devices, their working principles and the advancement of these materials as an underpinning to the development of technology. Particular attention has been given to solid state lighting devices and their applications since they have attracted the most interest and are the most promising. Solid state lighting devices including white light emitting diodes (LEDs), organic LEDs (OLEDs), quantum-dot LEDs (QLEDs) and carbon-dot LEDs (CLEDs) are promising energy efficient lighting sources for displays and general lighting. However there is no universal solution that will give better performance and efficiency for all types of applications. LEDs are replacing traditional lamps for both general lighting and display applications, whereas OLEDs are finding their own special applications in various areas. QLEDs and CLEDs have advantages such as high quantum yields, narrow emission spectra, tunable emission spectra and good stability over OLEDs, so applications for these devices are being extended to new types of lighting sources. There is a great deal of research on these materials and their processing technologies and the commercial viability of these technologies appears strong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kramer T. Seeing the Light. Evonik Magazine, 2010, 2: 12–19

    Google Scholar 

  2. Khan N, Abas N. Comparative study of energy saving light sources. Renewable & Sustainable Energy Reviews, 2011, 15(1): 296–309

    Article  Google Scholar 

  3. Park J, Lim S. LCD backlights, light sources, and flat fluorescent lamps. Journal of the Society for Information Display, 2007, 15(12): 1109–1114

    Article  Google Scholar 

  4. Lin M, Ho W, Shih F, Chen D, Wu Y. A cold-cathode fluorescent lamp driver circuit with synchronous primary-side dimming control. IEEE Transactions on Industrial Electronics, 1998, 45(2): 249–255

    Article  Google Scholar 

  5. Jacob B. Lamps for improving the energy efficiency of domestic lighting. Lighting Research & Technology, 2009, 41(3): 219–228

    Article  Google Scholar 

  6. Arik M, Setlur A. Environmental and economical impact of LED lighting systems and effect of thermal management. International Journal of Energy Research, 2010, 34(13): 1195–1204

    Article  Google Scholar 

  7. Mooney J. Fluorescent Lamps. Transactions of the Kansas Academy of Science, 1951, 54(4): 504–505

    Article  Google Scholar 

  8. Nakamura H. Recent development of white LEDS and solid state lighting. Light & Engineering, 2009, 17(4): 13–17

    Google Scholar 

  9. Duagal A, Heller C, Shiang J, Liu J, Lewis L. Solution-processed organic light-emitting diodes for lighting. Journal of display technology, 2007, 3(2): 184–192

    Article  Google Scholar 

  10. Kim S O, Lee K H, Kim G Y, Seo J H, Kim Y K, Yoon S S. A highly efficient deep blue fluorescent OLED based on diphenylaminofluorenylstyrene-containing emitting materials. Synthetic Metals, 2010, 160(11-12): 1259–1265

    Article  CAS  Google Scholar 

  11. Hewitt P C. Electric gas lamps and gas electrical resistance phenomena. Transactions of the American Institute of Electrical Engineers, 1902, XIX: 59–65

    Article  Google Scholar 

  12. Raposo C, Windmöller C C, Durão W A Jr. Mercury speciation in fluorescent lamps by thermal release analysis. Waste Management (New York, N.Y.), 2003, 23(10): 879–886

    CAS  Google Scholar 

  13. Timothy B. US Patent, 2001038264, 2001-04-12

  14. Koo H, Chang C, Cho N, Lee J. Development and application of less-mercury flat fluorescent lamps for backlights and general lighting. Journal of the Society for Information Display, 2008, 16(7): 759–764

    Article  Google Scholar 

  15. Thaler E, Wilson R, Doughty D, Beers W. Measurement of mecury bound in the glass envelope during operation of fluorescent lamps. Journal of the Electrochemical Society, 1995, 142(6): 1968–1970

    Article  CAS  Google Scholar 

  16. Chang T C, You S J, Yu B S, Chen C M, Chiu Y C. Treating high-mercury-containing lamps using full-scale thermal desorption technology. Journal of Hazardous Materials, 2009, 162(2–3): 967–972

    Article  CAS  Google Scholar 

  17. Della P P. US Patent, 3657589, 1927-04-18

  18. Elenbaas W. Fluorescent lamps. 2nd. London: Macmillan, 1971

    Google Scholar 

  19. Lin D, Yan W. Modeling of cold cathode fluorescent lamps (CCFLs) with realistic electrode profile. IEEE Transactions on Power Electronics, 2010, 25(3): 699–709

    Article  Google Scholar 

  20. Alberts I, Barratt D, Ray A. Hollow cathode effect in cold cathode fluorescent lamps: a review. Journal of Display Technology, 2010, 6(2): 52–59

    Article  CAS  Google Scholar 

  21. Patent L E E C L. US Patent 2005057143, 2005-11-08

  22. Guangsup Cho, Lee J Y, Lee D H, Kim S B, Song H S, Jehuan Koo, Kim B S, Kang J G, Choi E H, Lee UW, Yang S C, Verboncoeur J P. Glow discharge in the external electrode fluorescent lamp. IEEE Transactions on Plasma Science, 2005, 33(4): 1410–1415

    Article  Google Scholar 

  23. Cho K, Oh W, Moon G, Park M, Lee S. Study on the equivalent model of an external electrode fluorescent lamp based on equivalent resistance and capacitance variation. Journal of Power Electronics, 2007, 7(1): 38–43

    Google Scholar 

  24. Lim D S. US Patent, 2006126332, 2006-06-15

  25. Hironori I. Japanese Patent, 2004079270, 2004-03-11

  26. Jinno M, Okamoto M, Takeda M, Motomura H. Luminance and efficacy improvement of low-pressure xenon pulsed fluorescent lamps by using an auxiliary external electrode. Journal of Physics. D, Applied Physics, 2007, 40(13): 3889–3895

    Article  CAS  Google Scholar 

  27. Hu W, Liu Z, Yang M. Luminescence characteristics of mercuryfree flat fluorescent lamp with arc-shape anodes. IEEE Transactions on Consumer Electronics, 2010, 56(4): 2631–2635

    Article  Google Scholar 

  28. Jung J C, Lee J K, Seo I W, Oh B J, Whang K W. Electro-optic characteristics and areal selective dimming method for a new highly efficient mercury-free flat fluorescent lamp (MFFL). Journal of Physics. D, Applied Physics, 2009, 42(12): 125205

    Article  Google Scholar 

  29. Winsor M, Flynn J. 16.1: Uniform discharge hybrid flat fluorescent lamp (HFFL). SID Symposium Digest of Technical Papers, 2007, 38(1): 979–982

    Article  CAS  Google Scholar 

  30. Uhrlandt D, Bussiahn R, Gorchakov S, Lange H, Loffhagen D, Notzold D. Low-pressure mercury-free plasma light sources: experimental and theoretical perspectives. Journal of Physics. D, Applied Physics, 2005, 38(17): 3318–3325

    Article  CAS  Google Scholar 

  31. Shur M, Zukauskas A. Solid-state lighting: toward superior illumination. Proceedings of the IEEE, 2005, 93(10): 1691–1703

    Article  CAS  Google Scholar 

  32. Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As1 − x Px) junctions. Applied Physics Letters, 1962, 1(4): 82–83

    Article  CAS  Google Scholar 

  33. Nakamura S, Senoh N, Iwasa N, Nagahama S. High-brightness ingan blue, green and yellow light-emitting-diodes with quantum-well structures. Japanese Journal of Applied Physics, 1995, 34(Part 2, No. 7A 7A): L797–L799

    Article  CAS  Google Scholar 

  34. Nakamura S. III—V nitride based light-emitting devices. Solid State Communications, 1997, 102(2–3): 237–248

    Article  CAS  Google Scholar 

  35. Li H, Zhang C, Li D, Duan Y. Simulation of transform for external quantum efficiency and power efficiency of electroluminescent devices. Journal of Luminescence, 2007 122–123: 626–628

    Article  Google Scholar 

  36. Lee S Y, Kwon J W, Kim H S, Choi M S, Byun K S. New design and application of high efficiency LED driving system for RGBLED backlight in LCD pisplay. In: Power Electronics Specialists Conference, 2006, PESC’06. 37th IEEE, 2006

  37. Chiu H, Cheng S. LED backlight driving system for large-scale LCD panels. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2751–2760

    Article  Google Scholar 

  38. Cho H, Kwon O. A local dimming algorithm for low power LCD TVs using edge-type LED backlight. IEEE Transactions on Consumer Electronics, 2010, 56(4): 2054–2060

    Article  Google Scholar 

  39. Bernanose A. Electroluminescence of organic compounds. British Journal of Applied Physics, 1955, 6(S4): S54–S55

    Article  Google Scholar 

  40. Tang C, Vanslyke S. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915

    Article  CAS  Google Scholar 

  41. Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting-diodes based on conjugated polymers. Nature, 1990, 347(6293): 539–541

    Article  CAS  Google Scholar 

  42. Mitschke U, Bauerle P. The electroluminescence of organic materials. Journal of Materials Chemistry, 2000, 10(7): 1471–1507

    Article  CAS  Google Scholar 

  43. Zhou G, Wong W, Suo S. Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). Journal of Photochemistry and Photobiology, C, Photochemistry Reviews, 2010, 11(4): 133–156

    Article  CAS  Google Scholar 

  44. Hatwar T K. European Patent, 1492167, 2004-06-14

  45. Kisan H T. US Patent, 2007228938, 2007-10-04

  46. Lee Y, Ju B, Jeon W, Kwon J, Park O, Yu J, Chin B D. Balancing the white emission of OLED by a design of fluorescent blue and phosphorescent green/red emitting layer structures. Synthetic Metals, 2009, 159(3–4): 325–330

    Article  CAS  Google Scholar 

  47. Shi J. US Patent, 5935721, 1999-08-10

  48. Norimasa Y. European Patent, 2299510, 2011-03-23

  49. Tang C W. US Patent, 4769292, 1988-09-06

  50. Alsalhi M S, Alam J, Dass L A, Raja M. Recent advances in conjugated polymers for light emitting devices. International Journal of Molecular Sciences, 2011, 12(3): 2036–2054

    Article  CAS  Google Scholar 

  51. Kim W Y. Recent developments and prospects of organic electroluminescent display technology. Journal of the Korean Physical Society, 1999, 35: S1115–S1119

    Google Scholar 

  52. Friend R H, Gymer RW, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Santos D A D, Brdas J L, Lgdlund M, Salaneck W R. Electroluminescence in conjugated polymers. Nature, 1999, 397(6715): 121–128

    Article  CAS  Google Scholar 

  53. Alan J. Heeger N S S, Ebinazar B N. Semiconducting and metallic polymers. Oxford: Oxford University Press, 2010

    Google Scholar 

  54. Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device. Science, 1995, 267(5202): 1332–1334

    Article  CAS  Google Scholar 

  55. Cheng G, Mazzeo M, Rizzo A, Li Y, Duan Y, Gigli G. White lightemitting devices based on the combined emission from red CdSe/ZnS quantum dots, green phosphorescent, and blue fluorescent organic molecules. Applied Physics Letters, 2009, 94(24): 243506

    Article  Google Scholar 

  56. Chu H Y, Lee J I, Do L M, Zyung T, Jung B J, Shim H K, Jang J. Organic white light emitting devices with an RGB stacked multilayer structure. Molecular Crystals and Liquid Crystals, 2003, 405(1): 119–125

    Article  CAS  Google Scholar 

  57. Ko C W, Tao Y T. Bright white organic light-emitting diode. Applied Physics Letters, 2001, 79(25): 4234–4236

    Article  CAS  Google Scholar 

  58. Ping C, Zhang L, Duan Y, Xie W, Zhao Y, Hou J, Liu S, Li B. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes. Journal of Physics. D, Applied Physics, 2009, 42(5): 055115

    Article  Google Scholar 

  59. D’Andrade B, Forrest S. White organic light-emitting devices for solid-state lighting. Advanced Materials (Deerfield Beach, Fla.), 2004, 16(18): 1585–1595

    Article  Google Scholar 

  60. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459(7244): 234–238

    Article  CAS  Google Scholar 

  61. Su S J. Highly efficient organic blue-and white-light-emitting devices having a carrier-and exciton-confining structure for reduced efficiency roll-off. Advanced Materials (Deerfield Beach, Fla.), 2008, 20(21): 4189

    CAS  Google Scholar 

  62. Tsuboi T. Recent advances in white organic light emitting diodes with a single emissive dopant. Journal of Non-Crystalline Solids, 2010, 356(37–40): 1919–1927

    Article  CAS  Google Scholar 

  63. Murray C, Norris D, Bawendi M. Synthesis and characterization of nearly monodisperse CDE (E = S, SE, TE) Semiconductor nanocrystalllites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715

    Article  CAS  Google Scholar 

  64. Colvin V, Schlamp M, Alivisatos A. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370(6488): 354–357

    Article  CAS  Google Scholar 

  65. Steigerwald M, Rice C. Organometallic synthesis of manganese telluride-isolation and characterization of [(Et3P)2(CO)3MNTE]2. Journal of the American Chemical Society, 1988, 110(13): 4228–4231

    Article  CAS  Google Scholar 

  66. Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715

    Article  CAS  Google Scholar 

  67. Katari J, Colvin V, Alivisatos A. X-ray photoelectron-spectroscopy of CDSE nanocrystals with applications to studies of the nanocrystal surface. Journal of Physical Chemistry, 1994, 98(15): 4109–4117

    Article  CAS  Google Scholar 

  68. Lee J, Sundar V, Heine J, Bawendi M, Jensen K. Full color emission from II-VI semiconductor quantum dot-polymer composites. Advanced Materials (Deerfield Beach, Fla.), 2000, 12(15): 1102–1105

    Article  CAS  Google Scholar 

  69. Jang E, Jun S, Jang H, Lim J, Kim B, Kim Y. White-light-emitting diodes with quantum dot color converters for display backlights. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(28): 3076–3080

    Article  CAS  Google Scholar 

  70. Li Y, Rizzo A, Mazzeo M, Carbone L, Manna L, Cingolani R, Gigli G. White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter. Journal of Applied Physics, 2005, 97(11): 113501

    Article  Google Scholar 

  71. Torriss B, Haché A, Gauvin S. White light-emitting organic device with electroluminescent quantum dots and organic molecules. Organic Electronics, 2009, 10(8): 1454–1458

    Article  CAS  Google Scholar 

  72. Kang B H, Seo J S, Jeong S, Lee J, Han C S, Kim D E, Kim K J, Yeom S H, Kwon D H, Kim H R, Kang SW. Highly efficient hybrid light-emitting device using complex of CdSe/ZnS quantum dots embedded in co-polymer as an active layer. Optics Express, 2010, 18(17): 18303–18311

    Article  CAS  Google Scholar 

  73. Xuan Y, Pan D, Zhao N, Ji X, Ma D. White electroluminescence from a poly(N-vinylcarbazole) layer doped with CdSe/CdS coreshell quantum dots. Nanotechnology, 2006, 17(19): 4966–4969

    Article  CAS  Google Scholar 

  74. Coe S, Woo W K, Bawendi M, Bulović V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800–803

    Article  CAS  Google Scholar 

  75. Kim T, Cho K, Lee E, Lee S, Chae J, Kim J, Kim D H, Kwon J Y, Amaratunga G, Lee S Y, Choi B L, Kuk Y, Kim J M, Kim K. Fullcolour quantum dot displays fabricated by transfer printing. Nature Photonics, 2011, 5(3): 176–182

    Article  CAS  Google Scholar 

  76. Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews, 2010, 110(1): 389–458

    Article  CAS  Google Scholar 

  77. Zorn M, Bae W K, Kwak J, Lee H, Lee C, Zentel R, Char K. Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices. ACS Nano, 2009, 3(5): 1063–1068

    Article  CAS  Google Scholar 

  78. Gopal A, Hoshino K, Kim S, Zhang X, Hoshino K, Kim S, Zhang X. Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Nanotechnology, 2009, 20(23): 235201

    Article  Google Scholar 

  79. Caruge J, Halpert J, Wood V, Bulovic V, Bawendi M. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nature Photonics, 2008, 2(4): 247–250

    Article  CAS  Google Scholar 

  80. Kang S, Huh H H, Son K C, Lee C S, Kim K H, Huh C, Kim E T. Light-emitting diode applications of colloidal CdSe/ZnS quantum dots embedded in TiO2-delta thin film. Physica Status Solidi B, Basic Research, 2009, 246(4): 889–892

    Article  CAS  Google Scholar 

  81. Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H, Luo P G, Yang H, Kose M E, Chen B, Veca L M, Xie S Y. Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 2006, 128(24): 7756–7757

    Article  CAS  Google Scholar 

  82. Li Q, Ohulchanskyy T, Liu R, Koynov K, Wu D, Best A, Kumar R, Bonoiu A, Prasad P N. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. Journal of Physical Chemistry C, 2010, 114(28): 12062–12068

    Article  CAS  Google Scholar 

  83. Yang S T, Wang X, Wang H, Lu F, Luo P G, Cao L, Meziani M J, Liu J H, Liu Y, Chen M, Huang Y, Sun Y P. Carbon dots as nontoxic and high-performance fluorescence imaging agents. Journal of Physical Chemistry C, 2009, 113(42): 18110–18114

    Article  CAS  Google Scholar 

  84. Yang S T, Cao L, Luo P G, Lu F, Wang X, Wang H, Meziani M J, Liu Y, Qi G, Sun Y P. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 2009, 131(32): 11308–11309

    Article  CAS  Google Scholar 

  85. Wang F, Kreiter M, He B, Pang S, Liu C Y. Synthesis of direct white-light emitting carbogenic quantum dots. Chemical Communications, 2010, 46(19): 3309–3311

    Article  CAS  Google Scholar 

  86. Wang F, Chen Y H, Liu C Y, Ma D G. White light-emitting devices based on carbon dots’ electroluminescence. Chemical Communications, 2011, 47(12): 3502–3504

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.H., Wang, W. & Li, Q. Advancement in materials for energy-saving lighting devices. Front. Chem. Sci. Eng. 6, 13–26 (2012). https://doi.org/10.1007/s11705-011-1168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-011-1168-y

Keywords

Navigation