Skip to main content
Log in

Modification of polycarbonateurethane surface with poly (ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol) monoacrylate (PEGMA) is grafted onto polycarbonateurethane (PCU) surface via ultraviolet initiated photopolymerization. The hydroxyl groups of poly(PEGMA) on the surface react with one NCO group of isophorone diisocyanate (IPDI) and another NCO group of IPDI is then hydrolyzed to form amino terminal group, which is further grafted with phosphorylcholine glyceraldehyde to establish a biocompatible hydrophilic structure on the surface. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm the successful grafting of both PEG and phosphorylcholine functional groups on the surface. The decrease of the water contact angle for the modified film is caused by synergic effect of PEG and phosphorylcholine, which both have the high hydrophilicity. Furthermore, the number of platelets adhered is relative low on the synergetically modified PCU film compared with the PCU film modified only by poly(PEGMA). Our synergic modification method using both PEG and phosphorylcholine may be applied in surface modification of blood-contacting biomaterials and some relevant devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kushwaha M, Anderson J M, Bosworth C A, Andukuri A, MinorW P, Lancaster J R J Jr, Anderson P G, Brott B C, Jun H W. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials, 2010, 31(7): 1502–1508

    Article  CAS  Google Scholar 

  2. Okoshi T, Soldani G, Goddard M, Galletti PM. Very small diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting. Journal of Thoracic and Cardiovascular Surgery, 1993, 105(5): 791–795

    CAS  Google Scholar 

  3. Isenberg B C, Williams C, Tranquillo R T. Small-diameter artificial arteries engineered in vitro. Circulation Research, 2006, 98(1): 25–35

    Article  CAS  Google Scholar 

  4. Wang H Y, Feng Y K, Behl M, Lendlein A, Zhao H Y, Xiao R F, Lu J, Zhang L, Guo J T. Hemocompatible PU/gelatin-heparin nanofibrous scaffolds as potential artificial blood vessels by bilayer electrospinning technique. Frontiers of Chemical Science and Engineering, 2011, 5(3): 392–400

    Article  CAS  Google Scholar 

  5. Feng Y K, Meng F R, Xiao R F, Zhao H Y, Guo J T. Electrospinning of polycarbonate urethane biomaterials. Frontiers of Chemical Science and Engineering, 2011, 5(1): 11–18

    Article  Google Scholar 

  6. Feng Y K, Xue Y, Guo J T, Cheng L, Jiao L C, Zhang L, Yue J L. Synthesis and characterization of poly(carbonate urethane) networks with shape-memory properties. Journal of Applied Polymer Science, 2009, 112(1): 473–478

    Article  CAS  Google Scholar 

  7. Behl M, Ridder U, Feng Y K, Kelch S, Lendlein A. Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter, 2009, 5(3): 676–684

    Article  CAS  Google Scholar 

  8. Guo J T, Yin JW, Feng Y K. Synthesis and characterization of HDI/MDI-polycarbonate urethanes. Transaction of Tianjin University, 2010, 16(5): 317–321

    Article  Google Scholar 

  9. Hsu S H, Kao Y C, Lin Z C. Enhanced biocompatibility in biostable poly(carbonate)urethane. Macromolecular Bioscience, 2004, 19, 4 (4): 464–470

    Article  Google Scholar 

  10. Seifalian A M, Salacinski H J, Tiwari A, Edwards A, Bowald S, Hamilton G. In vivo biostability of a poly(carbonate-urea)urethane graft. Biomaterials, 2003, 24(14): 2549–2557

    Article  CAS  Google Scholar 

  11. Chandy T, Van H J, Nettekoven W, Johnson J. Long-term in vitro stability assessment of polycarbonate urethane micro catheters: resistance to oxidation and stress cracking. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 89(2): 314–324

    Article  Google Scholar 

  12. John B J, Furukawa M. Enhanced mechanical properties of polyamide 6 fibers coated with a polyurethane thin film. Polymer Engineering and Science, 2009, 49(10): 1970–1978

    Article  CAS  Google Scholar 

  13. Ajili S H, Ebrahimi N G, Khorasani M T. Study on thermoplastic polyurethane/polypropylene (TPU/PP) blend as a blood bag material. Journal of Applied Polymer Science, 2003, 89(9): 2496–2501

    Article  CAS  Google Scholar 

  14. Feng Y K, Zhang S F, Wang H Y, Zhao H Y, Lu J, Guo J T, Behl M, Lendlein A. Drug release from biodegradable polyesterurethanes with shape-memory effect. Journal of Controlled Release, 2011, 152(Suppl 1): e20–e21

    Article  CAS  Google Scholar 

  15. Wei Y, Ji Y, Xiao L L, Lin Q K, Xu J P, Ren K F, Ji J. Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. Biomaterials, 2013, 34(11): 2588–2599

    Article  CAS  Google Scholar 

  16. Guo J T, Feng Y K, Ye Y Q, Zhao H Y. Construction of hemocompatible polycarbonate urethane with sulfoammonium zwitterionic polyethylene glycol. Journal of Applied Polymer Science, 2011, 122(2): 1084–1091

    Article  CAS  Google Scholar 

  17. Wu Z Q, Chen H, Huang H, Zhao T L, Liu X L, Li D, Yu Q. A facile approach to modify polyurethane surfaces for biomaterial applications. Macromolecular Bioscience, 2009, 9(12): 1165–1168

    Article  CAS  Google Scholar 

  18. Li J, Lin F, Li L D, Li J, Liu S. Surface engineering of poly(ethylene terephthalate) for durable hemocompatibility via a surface interpenetrating network technique. Macromolecular Chemistry and Physics, 2012, 213(20): 2120–2129

    Article  CAS  Google Scholar 

  19. Mel A D, Jell G, Stevens M M, Seifalian A M. Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules, 2008, 9(11): 2969–2979

    Article  Google Scholar 

  20. Zhu H G, Ji J, Shen J C. Surface engineering of poly(DL-lactic acid) by entrapment of biomacromolecules. Macromolecular Rapid Communications, 2002, 23(14): 819–823

    Article  CAS  Google Scholar 

  21. Khan M, Feng Y K, Yang D Z, Zhou W, Tian H, Han Y, Zhang L, Yuan W J, Zhang J, Guo J T, Zhang W C. Biomimetic design of amphiphilic polycations and surface grafting onto polycarbonate urethane film as effective antibacterial agents with controlled hemocompatibility. Journal of Polymer Science. Part A, Polymer Chemistry, 2013, 51(15): 3166–3176

    Article  CAS  Google Scholar 

  22. Gonçalvesa S, Leirósa A, Kootenb T V, Douradoa F, Rodrigues L R. Physicochemical and biological evaluation of poly(ethylene glycol) methacrylate grafted onto poly(dimethyl siloxane) surfaces for prosthetic devices. Colloids and Surfaces. B, Biointerfaces, 2013, 109(1): 228–235

    Article  Google Scholar 

  23. Ji J, Feng L X, Qiu Y X, Yu X J. Stearyl poly(ethylene oxide) grafted surface for preferential adsorption of part 2. The effect of the molecule mobility onto protein adsorption. Polymer, 2000, 41(10): 3713–3718

    Article  CAS  Google Scholar 

  24. Seongbong J, Kinam P. Surface modification using silanated poly (ethylene glycol)s. Biomaterials, 2000, 21(6): 605–616

    Article  Google Scholar 

  25. Wang H Y, Feng Y K, Fang Z C, Yuan W J, Khan M. Coelectrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering. Materials Science and Engineering C, 2012, 32(8): 2306–2315

    Article  CAS  Google Scholar 

  26. Zhao H Y, Feng Y K, Guo J T. Grafting of poly(ethylene glycol) monoacrylate onto polycarbonateurethane surfaces by ultraviolet radiation grafting polymerization to control hydrophilicity. Journal of Applied Polymer Science, 2011, 119(6): 3717–3727

    Article  CAS  Google Scholar 

  27. Yuan W J, Feng Y K, Wang H Y, Yang D Z, An B, Zhang W C, Khan M, Guo J T. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Materials Science and Engineering: C, 2013, 33(7): 3644–3651

    Article  CAS  Google Scholar 

  28. Perttua E K, Szoka F C. Zwitterionic sulfobetaine lipids that form vesicles with salt-dependent thermotropic properties. Chemical Communications, 2011, 47(47): 12613–12615

    Article  Google Scholar 

  29. Feng Y K, Yang D Z, Behl M, Lendlein A, Zhao H Y, Guo J T. The influence of zwitterionic phospholipid brushes grafted via UV-initiated or SI-ATR polymerization on the hemocompatibility of polycarbonateurethane. Macromolecular Symposia, 2011, 309–310(1): 6–15

    Article  Google Scholar 

  30. Feng Y K, Yang D Z, Zhao H Y, Guo J T, Chen Q L, Liu J S. Grafting sulfoammonium zwitterionic brushes onto polycarbonateurethane surface to improve hemocompatibility. Advanced Materials Research, 2011, 306–307: 1631–1634

    Article  Google Scholar 

  31. Shih Y J, Lai C J, Kung H H, Jiang S Y. Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood. Advanced Functional Materials, 2013, 23(9): 1100–1110

    Article  Google Scholar 

  32. Shih Y J, Chang Y. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir, 2010, 26(22): 17286–17294

    Article  CAS  Google Scholar 

  33. Wang M, Yuan J, Huang X, Cai X, Li L, Shen J. Grafting of carboxybetaine brush onto cellulose membranes via surfaceinitiated ARGET-ATRP for improving blood compatibility. Colloids and Surfaces. B, Biointerfaces, 2013, 103: 52–58

    Article  CAS  Google Scholar 

  34. Liu G Y, Hu X F, Chen C J, Ji J. Construct biomimetic giant vesicles via self-assembly of poly(2-methacryloyloxyethyl phosphorylcholine)-block-poly (D,L- lactide). Journal of Applied Polymer Science, 2010, 118(6): 3197–3202

    Article  CAS  Google Scholar 

  35. Gao B, Feng Y K, Lu J, Zhang L, Zhao M, Shi C C, Khan M, Guo J T. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion. Materials Science and Engineering C, 2013, 33(5): 2871–2878

    Article  CAS  Google Scholar 

  36. Lu J, Feng Y K, Gao B, Guo J T. Preparation and characterization of phosphorylcholine glyceraldehyde grafted polycarbonateurethane films. Journal of Polymer Research, 2012, 19(9): 9959–9969

    Article  Google Scholar 

  37. Gao W, Feng Y K, Lu J, Khan M, Guo J T. Biomimetic surface modification of polycarbonateurethane film via phosphorylcholinegraft for resisting platelet adhesion. Macromolecular Research, 2012, 20(10): 1063–1069

    Article  CAS  Google Scholar 

  38. Tan M Q, Feng Y K, Wang H Y, Zhang L, Khan M, Guo J T, Chen Q L, Liu J S. Immobilized bioactive agents onto polyurethane surface with heparin and phosphorylcholine group. Macromolecular Research, 2013, 21(5): 541–549

    Article  CAS  Google Scholar 

  39. Lu J, Feng Y K, Gao B, Guo J T. Grafting of a novel phosphorylcholine-containing vinyl monomer onto polycarbonateurethane surfaces by ultraviolet radiation grafting polymerization. Macromolecular Research, 2012, 20(7): 693–702

    Article  CAS  Google Scholar 

  40. Albrecht W, Seifert B, Weigel T, Schossig M, Holländer A, Groth T, Hilke R. Amination of poly(ether imide) membranes using di- and multivalent amines. Macromolecular Chemistry and Physics, 2003, 204(3): 510–521

    Article  CAS  Google Scholar 

  41. Jiang H, Wang X B, Li C Y, Li J S, Xu F J, Mao C, Yang WT, Shen J. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Langmuir, 2011, 27(18): 11575–11581

    Article  CAS  Google Scholar 

  42. Li D, Chen H, McClung W G, Brash J L. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clotlysis. Acta Biomaterialia, 2009, 5(6): 1864–1871

    Article  CAS  Google Scholar 

  43. Feng Y K, Zhao H Y, Behl M, Lendlein A, Guo J T, Yang D Z. Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility. Journal of Materials Science. Materials in Medicine, 2013, 24(1): 61–70

    Article  CAS  Google Scholar 

  44. Lomölder R, Plogmann F, Speier P. Selectivity of isophorone diisocyanate in the urethane reaction influence of temperature, catalysis, and reaction partners. Journal of Coatings Technology, 1997, 69(868): 51–57

    Article  Google Scholar 

  45. Miyazawa K, Winnik F M, Miyazawa K, Winnik F O M. Solution properties of phosphorylcholine-based hydrophobically modified polybetaines in water and mixed solvents. Macromolecules, 2002, 35(25): 9536–9544

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhong Li or Yakai Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Lv, J., Gao, B. et al. Modification of polycarbonateurethane surface with poly (ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion. Front. Chem. Sci. Eng. 8, 188–196 (2014). https://doi.org/10.1007/s11705-014-1414-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1414-1

Keywords

Navigation