Skip to main content
Log in

Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A novel hydrogel composite was prepared via inverse suspension polymerization using starch, acrylic acid and organo-mordenite micropowder with the cross-linker, N,N′-methylenebisacrylamide and the initiator, potassium persulfate. Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy confirmed that the acrylic acid was grafted onto the backbone of the corn starch, that the organo-mordenite participated in the polymerization, and that the addition of organo-mordenite improved the surface morphology of the hydrogel composite. The swelling capacity of the hydrogel composite was evaluated in distilled water, and solutions with different pH values, and various salt solutions. It was found that the incorporation of 10 wt-% organo-mordenite enhanced the water absorbency by 144% (from 268 to 655 g∙g–1) and swelling was extremely sensitive to the pH values, the concentration of the salt solution and cation type. Swelling kinetics and water diffusion mechanism of the hydrogel composite in distilled water were also discussed. Moreover, the hydrogel composite showed excellent reversibility of water absorption even after five repetitive cycles and the hydrogel composite exhibited significant environmental-responsiveness by changing the swelling medium from distilled water to 0.1 mol∙L–1 NaCl solution. In addition, the loading and release of urea by the hydrogel composite were tested and the nutrient-slowrelease capability of this material was found to be suitable for many potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Seetapan N, Wongsawaeng J, Kiatkamjornwong S. Gel strength and swelling of acrylamide-protic acid superabsorbent copolymers. Polymers for Advanced Technologies, 2011, 22(12): 1685–1695

    Article  CAS  Google Scholar 

  2. Raju K M, Raju M P. Synthesis and swelling properties of superabsorbent copolymers. Advances in Polymer Technology, 2001, 20(2): 146–154

    Article  CAS  Google Scholar 

  3. Swain S K, Shur B, Patra S K. Poly(acrylamide-co-vinyl alcohol)— superabsorbent materials reinforced by modified clay. Polymer Composites, 2013, 34(11): 1794–1800

    Article  CAS  Google Scholar 

  4. Li A, Wang A. Synthesis and properties of clay-based superabsorbent composite. European Polymer Journal, 2005, 41(7): 1630–1637

    Article  CAS  Google Scholar 

  5. Lokhande H T, Gotmare V D. Utilization of textile loomwaste as a highly absorbent polymer through graft co-polymerization. Bioresource Technology, 1999, 68(3): 283–286

    Article  CAS  Google Scholar 

  6. Kazanskii K S, Dubrovskii S A. Chemistry and physics of “agricultural” hydrogels. Advances in Polymer Science, 1992, 104: 97–133

    Article  CAS  Google Scholar 

  7. Mohana R K, Padmanabha R M. Synthesis of novel superabsorbing copolymers for agricultural and horticultural applications. Polymer International, 2001, 50(8): 946–951

    Article  Google Scholar 

  8. Chen L P, Ying K L, Hsu K C. Amphibious water-soluble copolymer. I. Its synthesis and dispersing ability on barium titanate. Journal of Applied Polymer Science, 2004, 92(4): 2232–2239

    Article  CAS  Google Scholar 

  9. Zhang Y H, Wang L M, Li X H, He P X. Salt-resistant superabsorbents from inverse-suspension polymerization of PEG methacrylate, acryamide and partially neutralized acrylic acid. Journal of Polymer Research, 2011, 18(2): 157–161

    Article  CAS  Google Scholar 

  10. Hao L, Yang H, Lei Z. Synthesis and properties of thermoresponsive macroporous PAM-co-PNIPAM microspheres. Materials Letters, 2012, 70: 83–85

    Article  CAS  Google Scholar 

  11. Wang G, Li M, Chen X. Inverse suspension polymerization of sodium acrylate. Journal of Applied Polymer Science, 1997, 65(4): 789–794

    Article  CAS  Google Scholar 

  12. Zhang Y, Gu Q, Yin J, Wang Z, He P. Effect of organic montmorillonite type on the swelling behavior of superabsorbent nanocomposites. Advances in Polymer Technology, 2014, 33(2): 21400–21407

    Article  Google Scholar 

  13. Karlsson M E, Leeman A M, Björck I M, Eliasson A C. Some physical and nutritional characteristics of genetically modified potatoes varying in amylose/amylopectin ratios. Food Chemistry, 2007, 100(1): 136–146

    Article  CAS  Google Scholar 

  14. Pereira A G B, Paulino A T, Nakamura C V, Britta E A, Rubira A F, Muniz E C. Effect of starch type on miscibility in poly(ethylene oxide)(PEO)/starch blends and cytotoxicity assays. Materials Science and Engineering C, 2011, 31(2): 443–451

    Article  CAS  Google Scholar 

  15. Spagnol C, Rodrigues F H, Pereira A G, Fajardo A R, Rubira A F, Muniz E C. Superabsorbent hydrogel nanocomposites based on starch-g-poly (sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose, 2012, 19(4): 1225–1237

    Article  CAS  Google Scholar 

  16. Al E, Güçlü G, Iyim T B, Emik S, Özgümüs S. Synthesis and properties of starch-graft-acrylic acid/Na-montmorillonite superabsorbent nanocomposite hydrogels. Journal of Applied Polymer Science, 2008, 109(1): 16–22

    Article  CAS  Google Scholar 

  17. Lanthong P, Nuisin R, Kiatkamjornwong S. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/ itaconic acid superabsorbents. Carbohydrate Polymers, 2006, 66(2): 229–245

    Article  CAS  Google Scholar 

  18. Irani M, Ismail H, Ahmad Z. Preparation and properties of linear low-density polyethylene-g-poly(acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polymer Testing, 2013, 32(3): 502–512

    Article  CAS  Google Scholar 

  19. Subhas S, Samar C D, Dipak R B. Synthesis and characterization of nanoclay-polymer composites from soil clay with respect to their water-holding capacities and nutrient-release behavior. Journal of Applied Polymer Science, 2014, 131(6): 3351–3359

    Google Scholar 

  20. Macias A F, Spinola A G, Mendoza T MH, Gonzalez F D, Zelaya F P. Effect of zeolite (clinoptilolite and mordenite) amended andosols on soil chemical environment and growth of oat. Interciencia, 2007, 32(10): 692–696

    Google Scholar 

  21. Ramesh K, Reddy D D, Biswas A K, Rao A S. Zeolites and their potential uses in agriculture. Advances in Agronomy, 2011, 113: 215–236

    Google Scholar 

  22. Komaromine MK, Loksa G, Csereklye K E, Bardoczyne E S, Kallai S. Use of zeolite to improve soil amelioration and takes effects on microclimate. Cereal Research Communications, 2008, 36: 1783–1786

    CAS  Google Scholar 

  23. Oste L A, Lexmond T M, van Riemsdijk W H. Metal immobilization in soils using synthetic zeolites. Journal of Environmental Quality, 2002, 31(3): 813–821

    Article  CAS  Google Scholar 

  24. Khoonsap S, Amnuaypanich S. Mixed matrix membranes prepared from poly(vinyl alcohol) (PVA) incorporated with zeolite 4A-graftpoly( 2-hydroxyethylmethacrylate) (zeolite-g-PHEMA) for the pervaporation dehydration of water-acetone mixtures. Journal of Membrane Science, 2011, 367(1-2): 182–189

    Article  CAS  Google Scholar 

  25. Guo L P, Chen Y Z, Yang J. The surface modification of zeolite-4A by CTAB and its properties. Journal of Wuhan University of Technology-Material, 1999, 14: 18–23 (in Chinese)

    CAS  Google Scholar 

  26. Jin S P, Yue G R, Feng L, Han Y Q, Yu X H, Zhang Z H. Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent. Journal of Agricultural and Food Chemistry, 2011, 59(1): 322–327

    Article  CAS  Google Scholar 

  27. Xie L H, Liu M Z, Ni B L, Wang F Y. New environment-friendly use of wheat straw in slow-release fertilizer formulations with the function of superabsorbent. Industrial & Engineering Chemistry Research, 2012, 51(10): 3855–3862

    Article  CAS  Google Scholar 

  28. Li A, Zhang J P, Wang A Q. Preparation and slow-release property of a poly(acrylic acid)/attapulgite/sodium humate superabsorbent composite. Journal of Applied Polymer Science, 2007, 103(1): 37–45

    Article  CAS  Google Scholar 

  29. Ladha J K, Pathak H, Krupnik T J, Six J J, van Kessel C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy, 2005, 87: 85–156

    Article  CAS  Google Scholar 

  30. Liu M Z, Zhan F L, Wu L, Guo M Y. Preparation of slow release urea fertilizer with preservation of soil moisture. Journal of Polymer Materials, 2004, 21(2): 213–220

    CAS  Google Scholar 

  31. Wang Y F, Liu M Z, Ni B L, Xie L H. Karrageenan-sodium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anticompaction properties. Industrial & Engineering Chemistry Research, 2012, 51(3): 1413–1422

    Article  CAS  Google Scholar 

  32. Liu M Z, Liang R, Zhan F L, Liu Z, Niu A Z. Synthesis of a slowrelease and superabsorbent nitrogen fertilizer and its properties. Polymers for Advanced Technologies, 2006, 17(6): 430–438

    Article  CAS  Google Scholar 

  33. Zhang Y, Zhao L, Ma K, Mao G Z. The surface modification of zeolite 4a and its effect on the water-absorption capability of starchg- poly(acrylic acid) composite. Clays and Clay Minerals, 2014, 62(3): 211–223

    Article  Google Scholar 

  34. Subhas S, Samar C D, Dipak R B. Synthesis and characterization of nanoclay-polymer composites from soil clay with respect to their water-holding capacities and nutrient-release behavior. Journal of Applied Polymer Science, 2014, 131(6): 3351–3359

    Google Scholar 

  35. Watt G W, Chrisp J D. Spectrophotometric method for determination of urea. Analytical Chemistry, 1954, 26(3): 452–453

    Article  CAS  Google Scholar 

  36. Zhang M Y, Cheng Z Q, Zhao T Q, Liu M Z, Hu M J, Li J F. Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) superabsorbent hydrogel. Journal of Agricultural and Food Chemistry, 2014, 62(35): 8867–8874

    Article  CAS  Google Scholar 

  37. Silverstein R M, Webster F X. Spectrometric Identification of Organic Compounds. 6th ed. New York: Wiley, 1998

  38. Lamberti C, Bordiga S, Zecchina A, Salvalaggio M, Geobaldo F, Areán C O. XANES, EXAFS and FTIR characterization of copperexchanged mordenite. Journal of the Chemical Society, Faraday Transactions, 1998, 94(10): 1519–1525

    Article  CAS  Google Scholar 

  39. Rožic M, Miljanic S. Sorption of HDTMA cations on croatian natural mordenite tuff. Journal of Hazardous Materials, 2011, 185(1): 423–429

    Article  Google Scholar 

  40. Li Z H, Jiang W T, Hong H L. An FTIR investigation of hexadecyltrimethylammonium intercalation into rectorite. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2008, 71(4): 1525–1534

    Article  Google Scholar 

  41. Pourjavadi A, Soleyman R. Novel high capacity swelling superabsorbent composite and its potential for controlled release of fertilizers. Iranian Journal of Chemistry and Chemical Engineering-International English Edition, 2010, 29(4): 113–123

    CAS  Google Scholar 

  42. Kaur I, Sharma M. Synthesis and characterization of graft copolymers of Sago starch and acrylic acid. Stärke, 2012, 64(6): 441–451

    Article  CAS  Google Scholar 

  43. Zhang J P, Chen H, Wang A Q. Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite. European Polymer Journal, 2005, 41(10): 2434–2442

    CAS  Google Scholar 

  44. Wang W B, Xu J X, Wang A Q. A pH-, salt- and solvent-responsive carboxymethylcellulose-g-poly(sodium acrylate)/medical stone superabsorbent composite with enhanced swelling and responsive properties. Express Polymer Letters, 2011, 5(5): 385–400

    Article  CAS  Google Scholar 

  45. Wu J, Wei Y, Lin J, Lin S. Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer, 2003, 44(21): 6513–6520

    Article  CAS  Google Scholar 

  46. Treacy M M J, Higgins J B. Collection of simulated XRD powder patterns for zeolites. 5th ed. Amsterdam: Elsevier, 2007, 284

    Book  Google Scholar 

  47. Mithilesh Y, Somit K S, Kyong Y R. Synthesis of partially hydrolyzed graft copolymer (H-Ipomoea hederacea seed gum-gpolyacrylonitrile). Carbohydrate Polymers, 2013, 95(1): 471–478

    Article  Google Scholar 

  48. Zhang J, Li A, Wang A. Study on superabsorbent composite. VI. Preparation, characterization and swelling behaviors of starch phosphate-graft-acrylamide/attapulgite superabsorbent composite. Carbohydrate Polymers, 2006, 65(2): 150–158

    Article  CAS  Google Scholar 

  49. Rashidzadeh A, Olad A, Salari D, Reyhanitabar A. On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-poly(acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. Journal of Polymer Research, 2014, 21(2): 1–15

    Article  CAS  Google Scholar 

  50. Amnuaypanich S, Patthana J, Phinyocheep P. Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of waterethanol mixtures. Chemical Engineering Science, 2009, 64(23): 4908–4918

    Article  CAS  Google Scholar 

  51. Elazzouzi H S, Nishiyama Y, Putaux J L, Heux L, Dubreuil F, Rochas C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 2008, 9(1): 57–65

    Article  Google Scholar 

  52. Schott H. Swelling kinetics of polymers. Journal of Pharmaceutical Sciences, 1992, 81(5): 467–470

    Article  CAS  Google Scholar 

  53. Li S, Liu X, Zou T, Xiao W. Removal of cationic dye from aqueous solution by a macroporous hydrophobically modified poly(acrylic acid-acrylamide) hydrogel with enhanced swelling and adsorption properties. Clean-Soil Air Water, 2010, 38(4): 378–386

    Article  CAS  Google Scholar 

  54. Kasgoz H, Durmus A. Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polymers for Advanced Technologies, 2008, 19(7): 838–845

    Article  CAS  Google Scholar 

  55. Mujumdar S K, Siegel R A. Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on Nisopropylacrylamide. Journal of Polymer Science. Part A, Polymer Chemistry, 2008, 46(19): 6630–6640

    Article  CAS  Google Scholar 

  56. Liang R, Yuan H, Xi G, Zhou Q. Synthesis of wheat straw-g-poly (acrylic acid) superabsorbent composites and release of urea from it. Carbohydrate Polymers, 2009, 77(2): 181–187

    Article  CAS  Google Scholar 

  57. Joseph J G. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies, 2009, 21: 27–47

    Google Scholar 

  58. Flory P J. Principles of Polymer Chemistry. New York: Cornell University Press, 1953

    Google Scholar 

  59. Zhang J P, Li A, Wang A Q. Study on superabsorbent composite. V. Synthesis, swelling behaviors and application of poly(acrylic acidco- acrylamide)/sodium humate/attapulgite superabsorbent composite. Polymers for Advanced Technologies, 2005, 16(11): 813–820

    Article  CAS  Google Scholar 

  60. Bardajee G R, Pourjavadi A, Soleyman R. Irradiation synthesis of biopolymer-based superabsorbent hydrogel: Optimization using the Taguchi method and investigation of its swelling behavior. Advances in Polymer Technology, 2009, 28(2): 131–140

    Article  CAS  Google Scholar 

  61. Xie J, Liu X, Liang J, Luo Y S. Swelling properties of superabsorbent poly(acrylic acid-co-acrylamide) with different crosslinkers. Journal of Applied Polymer Science, 2009, 112(2): 602–608

    Article  CAS  Google Scholar 

  62. Zhang M Y, Cheng Z Q, Liu M Z, Zhang Y Q, Hu M J, Li J F. Synthesis and properties of a superabsorbent from an ultravioletirradiated waste nameko mushroom substrate and poly(acrylic acid). Journal of Applied Polymer Science, 2014, 131(13): 4525–4529

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gao, P., Zhao, L. et al. Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite. Front. Chem. Sci. Eng. 10, 147–161 (2016). https://doi.org/10.1007/s11705-015-1546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1546-y

Keywords

Navigation