Skip to main content
Log in

A mini review: Shape memory polymers for biomedical applications

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Shape memory polymers (SMPs) are smart materials that can change their shape in a pre-defined manner under a stimulus. The shape memory functionality has gained considerable interest for biomedical applications, which require materials that are biocompatible and sometimes biodegradable. There is a need for SMPs that are prepared from renewable sources to be used as substitutes for conventional SMPs. In this paper, advances in SMPs based on synthetic monomers and bio-compounds are discussed. Materials designed for biomedical applications are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wei Z G, Sandstroröm R, Miyazaki S. Shape-memory materials and hybrid composites for smart systems. Part I Shape-memory materials. Journal of Materials Science, 1998, 33(15): 3743–3762

    Article  CAS  Google Scholar 

  2. Feninat E F, Laroche G, Fiset M, Mantovani D. Shape memory materials for biomedical applications. Advanced Engineering Materials, 2002, 4(3): 91–104

    Article  Google Scholar 

  3. Hornbogen E. Comparison of shape memory metals and polymers. Advanced Engineering Materials, 2006, 8(1-2): 101–106

    Article  CAS  Google Scholar 

  4. Rainer WC, Redding EM, Hitov J J, Sloan AW, Stewart WD. US Patent, 3144398(A), 1964-08-11

  5. Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 2002, 296(5573): 1673–1676

    Article  PubMed  Google Scholar 

  6. Kratz K, Voigt U, Lendlein A. Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies. Advanced Functional Materials, 2012, 22(14): 3057–3065

    Article  CAS  Google Scholar 

  7. Enriquez-Sarano M, Schaff H V, Orszulak TA, Tajik A J, Bailey K R, Frye R L. Valve repair improves the outcome of surgery for mitral regurgitation: A multivariate analysis. Circulation, 1995, 91(4): 1022–1028

    Article  CAS  PubMed  Google Scholar 

  8. Alarcón C D H, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chemical Society Reviews, 2005, 34(3): 276–285

    Article  Google Scholar 

  9. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews, 2006, 58(15): 1655–1670

    Article  CAS  PubMed  Google Scholar 

  10. Xue L, Dai S, Li Z. Biodegradable shape-memory block copolymers for fast self-expandable stents. Biomaterials, 2010, 31(32): 8132–8140

    Article  CAS  PubMed  Google Scholar 

  11. Yakacki C M, Shandas R, Lanning C, Rech B, Eckstein A, Gall K. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials, 2007, 28(14): 2255–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Small W IV, Singhal P, Wilson T S, Maitland D J. Biomedical applications of thermally activated shape memory polymers. Journal of Materials Chemistry, 2010, 20(17): 3356–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yahia L. Shape Memory Polymers for Biomedical Applications. London: Woodhead Publishing, 2015

  14. Martina M, Hutmacher D W. Biodegradable polymers applied in tissue engineering research: A review. Polymer International, 2007, 56(2): 145–157

    Article  CAS  Google Scholar 

  15. Tschan M J L, Brule E, Haquette P, Thomas C M. Synthesis of biodegradable polymers from renewable resources. Polymer Chemistry, 2012, 3(4): 836–851

    Article  CAS  Google Scholar 

  16. Zheng Y, Li J, Lee E, Yang S. Light-induced shape recovery of deformed shape memory polymer micropillar arrays with gold nanorods. RSC Advances, 2015, 5(39): 30495–30499

    Article  CAS  Google Scholar 

  17. Zhang H, Zhang J, Tong X, Ma D, Zhao Y. Light polarizationcontrolled shape-memory polymer/gold nanorod composite. Macromolecular Rapid Communications, 2013, 34(19): 1575–1579

    Article  CAS  PubMed  Google Scholar 

  18. Zhang H, Xia H, Zhao Y. Optically triggered and spatially controllable shape-memory polymer-gold nanoparticle composite materials. Journal of Materials Chemistry, 2012, 22(3): 845–849

    Article  CAS  Google Scholar 

  19. Zhang H, Zhao Y. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles. ACS Applied Materials & Interfaces, 2013, 5(24): 13069–13075

    Article  CAS  Google Scholar 

  20. Wu Y, Hu J, Zhang C, Han J, Wang Y, Kumar B. A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer. Journal of Materials Chemsitry A, 2015, 3(1): 97–100

    Article  CAS  Google Scholar 

  21. Wang Z, Zhao J, Chen M, Yang M, Tang L, Dang Z M, Chen F, Huang M, Dong X. Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposites. ACS Applied Materials & Interfaces, 2014, 6(22): 20051–20059

    Article  CAS  Google Scholar 

  22. Lu X, Fei G, Xia H, Zhao Y. Ultrasound healable shape memory dynamic polymers. Journal of Materials Chemsitry A, 2014, 2(38): 16051–16060

    Article  CAS  Google Scholar 

  23. Li G, Fei G, Liu B, Xia H, Zhao Y. Shape recovery characteristics for shape memory polymers subjected to high intensity focused ultrasound. RSC Advances, 2014, 4(62): 32701–32709

    Article  CAS  Google Scholar 

  24. Li W, Liu Y, Leng J. Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior. RSC Advances, 2014, 4(106): 61847–61854

    Article  CAS  Google Scholar 

  25. Du H, Yu Y, Jiang G, Zhang J, Bao J. Microwave-induced shapememory effect of chemically crosslinked moist poly(vinyl alcohol) networks. Macromolecular Chemistry and Physics, 2011, 212(14): 1460–1468

    Article  CAS  Google Scholar 

  26. Razzaq M Y, Behl M, Lendlein A. Magnetic memory effect of nanocomposites. Advanced Functional Materials, 2012, 22(1): 184–191

    Article  CAS  Google Scholar 

  27. Lendlein A, Kelch S. Shape-memory polymers. Angewandte Chemie International Edition, 2002, 41(12): 2034–2057

    Article  CAS  Google Scholar 

  28. Liu C, Qin H, Mather P T. Review of progress in shape-memory polymers. Journal of Materials Chemistry, 2007, 17(16): 1543–1558

    Article  CAS  Google Scholar 

  29. Xie T. Recent advances in polymer shape memory. Polymer, 2011, 52(22): 4985–5000

    Article  CAS  Google Scholar 

  30. Hu J, Zhu Y, Huang H, Lu J. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Progress in Polymer Science, 2012, 37(12): 1720–1763

    Article  CAS  Google Scholar 

  31. Berg G J, McBrideMK,Wang C, Bowman C N. New directions in the chemistry of shape memory polymers. Polymer, 2014, 55(23): 5849–5872

    Article  CAS  Google Scholar 

  32. Hager M D, Bode S, Weber C, Schubert U S. Shape memory polymers: Past, present and future developments. Progress in Polymer Science, 2015, 49-50: 3–33

    Article  CAS  Google Scholar 

  33. Zhao Q, Qi H J, Xie T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Progress in Polymer Science, 2015, 49-50: 79–120

    Article  CAS  Google Scholar 

  34. Ratna D, Karger-Kocsis J. Recent advances in shape memory polymers and composites: A review. Journal of Materials Science, 2008, 43(1): 254–269

    Article  CAS  Google Scholar 

  35. Liu Y, Lv H, Lan X, Leng J, Du S. Review of electro-active shapememory polymer composite. Composites Science and Technology, 2009, 69(13): 2064–2068

    Article  CAS  Google Scholar 

  36. Leng J, Lan X, Liu Y, Du S. Shape-memory polymers and their composites: Stimulus methods and applications. Progress in Materials Science, 2011, 56(7): 1077–1135

    Article  CAS  Google Scholar 

  37. Huang W M, Yang B, Zhao Y, Ding Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: A review. Journal of Materials Chemistry, 2010, 20(17): 3367–3381

    Article  CAS  Google Scholar 

  38. Meng H, Li G. A review of stimuli-responsive shape memory polymer composites. Polymer, 2013, 54(9): 2199–2221

    Article  CAS  Google Scholar 

  39. Behl M, Lendlein A. Triple-shape polymers. Journal of Materials Chemistry, 2010, 20(17): 3335–3345

    Article  CAS  Google Scholar 

  40. Kumar K S S, Biju R, Nair C P R. Progress in shape memory epoxy resins. Reactive & Functional Polymers, 2013, 73(2): 421–430

    Article  CAS  Google Scholar 

  41. Zhao Q, Behl M, Lendlein A. Shape-memory polymers with multiple transitions: Complex actively moving polymers. Soft Matter, 2013, 9(6): 1744–1755

    Article  CAS  Google Scholar 

  42. Hu J, Chen S. A review of actively moving polymers in textile applications. Journal of Materials Chemistry, 2010, 20(17): 3346–3355

    Article  CAS  Google Scholar 

  43. Liu Y, Du H, Liu L, Leng J. Shape memory polymers and their composites in aerospace applications: A review. Smart Materials and Structures, 2014, 23(2): 023001

    Article  CAS  Google Scholar 

  44. Serrano M C, Ameer G A. Recent insights into the biomedical applications of shape-memory polymers. Macromolecular Bioscience, 2012, 12(9): 1156–1171

    Article  CAS  PubMed  Google Scholar 

  45. Lendlein A, Behl M, Hiebl B, Wischke C. Shape-memory polymers as a technology platform for biomedical applications. Expert Review of Medical Devices, 2010, 7(3): 357–379

    Article  CAS  PubMed  Google Scholar 

  46. Chan B Q Y, Low ZWK, Heng S J W, Chan S Y, Owh C, Loh X J. Recent advances in shape memory soft materials for biomedical applications. ACS Applied Materials & Interfaces, 2016, 8(16): 10070–10087

    Article  CAS  Google Scholar 

  47. Zhang R, Wang Y, Wang K, Zheng G, Li Q, Shen C. Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent. Polymer Bulletin, 2013, 70(1): 195–206

    Article  CAS  Google Scholar 

  48. Saini P, Arora M, Kumar M N V R. Poly(lactic acid) blends in biomedical applications. Advanced Drug Delivery Reviews, 2016, 107: 47–59

    Article  CAS  PubMed  Google Scholar 

  49. Shasteen C, Choy Y B. Controlling degradation rate of poly(lactic acid) for its biomedical applications. Biomedical Engineering Letters, 2011, 1(3): 163–167

    Article  Google Scholar 

  50. Lu X, Cai W, Zhao L C. Study on the shape memory behavior of poly(L-lactide). Materials Science Forum, 2005, 475-479: 2399–2402

    CAS  Google Scholar 

  51. Zheng X, Zhou S, Li X, Weng J. Shape memory properties of poly ((D,L-lactide)/hydroxyapatite composites. Biomaterials, 2006, 27(24): 4288–4295

    Article  CAS  PubMed  Google Scholar 

  52. Meng Q, Hu J, Ho K, Ji F, Chen S. The shape memory properties of biodegradable chitosan/poly(L-lactide) composites. Journal of Polymers and the Environment, 2009, 17(3): 212–224

    Article  CAS  Google Scholar 

  53. Filion T M, Xu J, Prasad M L, Song J. In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites. Biomaterials, 2011, 32(4): 985–991

    Article  CAS  PubMed  Google Scholar 

  54. Liang J Z, Duan D R, Tang C Y, Tsui C P, Chen D Z. Flexural properties of poly-L-lactide and polycaprolactone shape memory composites filled with nanometer calcium carbonate. Journal of Macromolecular Science, Part B: Physics, 2013, 52(7): 964–972

    Article  CAS  Google Scholar 

  55. Kutikov A B, Reyer K A, Song J. Shape memory performance of thermoplastic amphiphilic triblock copolymer poly(D,L-lactic acidco- ethylene glycol-co-D,L-lactic acid) (PELA)/hydroxyapatite composites. Macromolecular Chemistry and Physics, 2014, 215(24): 2482–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ruan C, Wang Y, Zhang M, Luo Y, Fu C, Huang M, Sun J, Hu C. Design, synthesis and characterization of novel biodegradable shape memory polymers based on poly(D,L-lactic acid) diol, hexamethylene diisocyanate and piperazine. Polymer International, 2012, 61(4): 524–530

    Article  CAS  Google Scholar 

  57. Radjabian M, Kish M H, Mohammadi N. Structure-property relationship for poly(lactic acid) (PLA) filaments: Physical, thermomechanical and shape memory characterization. Journal of Polymer Research, 2012, 19(6): 9870

    Article  CAS  Google Scholar 

  58. Chang R, Huang Y, Shan G, Bao Y, Yun X, Dong T, Pan P. Alternating poly(lactic acid)/poly(ethylene-co-butylene) supramolecular multiblock copolymers with tunable shape memory and self-healing properties. Polymer Chemistry, 2015, 6(32): 5899–5910

    Article  CAS  Google Scholar 

  59. Lai S M, Wu W L, Wang Y J. Annealing effect on the shape memory properties of polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. Journal of Polymer Research, 2016, 23(5): 99

    Article  CAS  Google Scholar 

  60. Shen T, Lu M, Zhou D, Liang L. Influence of blocked polyisocyanate on thermomechanical, shape memory and biodegradable properties of poly(lactic acid)/poly(ethylene glycol) blends. Iranian Polymer Journal, 2012, 21(5): 317–323

    Article  CAS  Google Scholar 

  61. Jing X, Mi H Y, Peng X F, Turng L S. The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends. Polymer Engineering and Science, 2015, 55(1): 70–80

    Article  CAS  Google Scholar 

  62. Yuan D, Chen Z, Xu C, Chen K, Chen Y. Fully biobased shape memory material based on novel cocontinuous structure in poly (lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustainable Chemistry & Engineering, 2015, 3(11): 2856–2865

    Article  CAS  Google Scholar 

  63. Tsujimoto T, Uyama H. Full Biobased polymeric material from plant oil and poly(lactic acid) with a shape memory property. ACS Sustainable Chemistry & Engineering, 2014, 2(8): 2057–2062

    Article  CAS  Google Scholar 

  64. Lai S M, Lan Y C. Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. Journal of Polymer Research, 2013, 20(5): 140

    Article  CAS  Google Scholar 

  65. Raja M, Ryu S H, Shanmugharaj A M. Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites. European Polymer Journal, 2013, 49(11): 3492–3500

    Article  CAS  Google Scholar 

  66. Wang W, Ping P, Chen X, Jing X. Polylactide-based polyurethane and its shape-memory behavior. European Polymer Journal, 2006, 42(6): 1240–1249

    Article  CAS  Google Scholar 

  67. Ulery B D, Nair L S, Laurencin C T. Biomedical applications of biodegradable polymers. Journal of Polymer Science. Part B, Polymer Physics, 2011, 49(12): 832–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Woodruff M A, Hutmacher D W. The return of a forgotten polymer-polycaprolactone in the 21st century. Progress in Polymer Science, 2010, 35(10): 1217–1256

    Article  CAS  Google Scholar 

  69. Darney P D, Monroe S E, Klaisle C M, Alvarado A. Clinical evaluation of the Capronor contraceptive implant: Preliminary report. American Journal of Obstetrics and Gynecology, 1989, 160(5): 1292–1295

    Article  CAS  PubMed  Google Scholar 

  70. NöChel U, Reddy C S, Uttamchand N K, Kratz K, Behl M, Lendlein A. Shape-memory properties of hydrogels having a poly (e-caprolactone) crosslinker and switching segment in an aqueous environment. European Polymer Journal, 2013, 49(9): 2457–2466

    Article  CAS  Google Scholar 

  71. Chen W C, Lai S M, Chang M Y, Liao Z C. Preparation and properties of natural rubber (NR)/polycaprolactone (PCL) biobased shape memory polymer blends. Journal of Macromolecular Science, Part B: Physics, 2014, 53(4): 645–661

    Article  CAS  Google Scholar 

  72. Mya K Y, Gose H B, Pretsch T, Bothe M, He C B. Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. Journal of Materials Chemistry, 2011, 21(13): 4827–4836

    Article  CAS  Google Scholar 

  73. Weng S, Xia Z, Chen J, Gong L. Shape memory properties of polycaprolactone-based polyurethanes prepared by reactive extrusion. Journal of Applied Polymer Science, 2013, 127(1): 748–759

    Article  CAS  Google Scholar 

  74. Kashif M, Yun B, Lee K S, Chang Y W. Biodegradable shapememory poly(e-caprolactone)/polyhedral oligomeric silsequioxane nanocomposites: Sustained drug release and hydrolytic degradation. Materials Letters, 2016, 166: 125–128

    Article  CAS  Google Scholar 

  75. Wang W, Liu D, Lu L, Chen H, Gong T, Lv J, Zhou S. The improvement of the shape memory function of poly(e-caprolactone)/ nano-crystalline cellulose nanocomposites via recrystallization under a high-pressure environment. Journal Materials Chemsitry A, 2016, 4(16): 5984–5992

    Article  CAS  Google Scholar 

  76. Wang L, Yang X, Chen H, Gong T, Li W, Yang G, Zhou S. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Applied Materials & Interfaces, 2013, 5(21): 10520–10528

    Article  CAS  Google Scholar 

  77. Wei M, Zhan M, Yu D, Xie H, He M, Yang K,Wang Y. Novel poly (tetramethylene ether)glycol and poly(e-caprolactone) based dynamic network via quadruple hydrogen bonding with tripleshape effect and self-healing capacity. ACS Applied Materials & Interfaces, 2015, 7(4): 2585–2596

    Article  CAS  Google Scholar 

  78. Xiao L, Wei M, Zhan M, Zhang J, Xie H, Deng X, Yang K, Wang Y. Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding. Polymer Chemistry, 2014, 5(7): 2231–2241

    Article  CAS  Google Scholar 

  79. Bai Y, Jiang C, Wang Q, Wang T. Multi-shape-memory property study of novel poly(e-caprolactone)/ethyl cellulose polymer networks. Macromolecular Chemistry and Physics, 2013, 214(21): 2465–2472

    Article  CAS  Google Scholar 

  80. Lee K M, Knight P T, Chung T, Mather P T. Polycaprolactone-POSS chemical/physical double networks. Macromolecules, 2008, 41(13): 4730–4738

    Article  CAS  Google Scholar 

  81. Hong S J, Yu WR, Youk J H. Two-way shape memory behavior of shape memory polyurethanes with a bias load. Smart Materials and Structures, 2010, 19(3): 035022

    Article  CAS  Google Scholar 

  82. Baker R M, Henderson J H, Mather P T. Shape memory poly(e- caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2013, 1(38): 4916

    Article  CAS  Google Scholar 

  83. Huang M, Dong X, Wang L, Zhao J, Liu G, Wang D. Two-way shape memory property and its structural origin of cross-linked poly(e-caprolactone). RSC Advances, 2014, 4(98): 55483–55494

    Article  CAS  Google Scholar 

  84. Pandini S, Baldi F, Paderni K, Messori M, Toselli M, Pilati F, Gianoncelli A, Brisotto M, Bontempi E, Riccò T. One-way and two-way shape memory behaviour of semi-crystalline networks based on sol-gel cross-linked poly(e-caprolactone). Polymer, 2013, 54(16): 4253–4265

    Article  CAS  Google Scholar 

  85. Pandini S, Passera S, Messori M, Paderni K, Toselli M, Gianoncelli A, Bontempi E, Riccò T. Two-way reversible shape memory behaviour of crosslinked poly(e-caprolactone). Polymer, 2012, 53(9): 1915–1924

    Article  CAS  Google Scholar 

  86. Raquez J M, Vanderstappen S, Meyer F, Verge P, Alexandre M, Thomassin J M, Jerome C, Dubois P. Design of cross-linked semicrystalline poly(e-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels-Alder reactions. Chemistry, 2011, 17(36): 10135–10143

    Article  CAS  PubMed  Google Scholar 

  87. Bai Y, Zhang X, Wang Q, Wang T. A tough shape memory polymer with triple-shape memory and two-way shape memory properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(13): 4771–4778

    Article  CAS  Google Scholar 

  88. Zotzmann J, Behl M, Hofmann D, Lendlein A. Reversible tripleshape effect of polymer networks containing polypentadecalactone- and poly(e-caprolactone)-segments. Advanced Materials, 2010, 22(31): 3424–3429

    Article  CAS  PubMed  Google Scholar 

  89. Behl M, Kratz K, Zotzmann J, Nochel U, Lendlein A. Reversible bidirectional shape-memory polymers. Advanced Materials, 2013, 25(32): 4466–4469

    Article  CAS  PubMed  Google Scholar 

  90. Wu Y, Hu J, Han J, Zhu Y, Huang H, Li J, Tang B. Two-way shape memory polymer with “switch-spring” composition by interpenetrating polymer network. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(44): 18816–18822

    Article  CAS  Google Scholar 

  91. Gong T, Zhao K, Wang W, Chen H, Wang L, Zhou S. Thermally activated reversible shape switch of polymer particles. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(39): 6855–6866

    Article  CAS  Google Scholar 

  92. Gautrot J E, Zhu X X. Biodegradable polymers based on bile acids and potential biomedical applications. Journal of Biomaterials Science. Polymer Edition, 2006, 17(10): 1123–1139

    Article  CAS  Google Scholar 

  93. Gautrot J E, Zhu X X. Main-chain bile acid based degradable elastomers synthesized by entropy-driven ring-opening metathesis polymerization. Angewandte Chemie International Edition, 2006, 45(41): 6872–6874

    Article  CAS  PubMed  Google Scholar 

  94. Gautrot J E, Zhu X X. Macrocyclic bile acids: From molecular recognition to degradable biomaterial building blocks. Journal of Materials Chemistry, 2009, 19(32): 5705

    Article  CAS  Google Scholar 

  95. Jia Y G, Zhu X X. Self-healing supramolecular hydrogel made of polymers bearing cholic acid and ß-cyclodextrin pendants. Chemistry of Materials, 2015, 27(1): 387–393

    Article  CAS  Google Scholar 

  96. Gautrot J E, Zhu X X. High molecular weight bile acid and ricinoleic acid-based copolyesters via entropy-driven ring-opening metathesis polymerisation. Chemical Communications, 2008, (14): 1674–1676

    Article  CAS  Google Scholar 

  97. Gautrot J E, Zhu X X. Shape memory polymers based on naturallyoccurring bile acids. Macromolecules, 2009, 42(19): 7324–7331

    Article  CAS  Google Scholar 

  98. Thérien-Aubin H, Gautrot J E, Shao Y, Zhang J, Zhu X X. Shape memory properties of main chain bile acids polymers. Polymer, 2010, 51(1): 22–25

    Article  CAS  Google Scholar 

  99. Strandman S, Tsai I H, Lortie R, Zhu X X. Ring-opening polymerization of bile acid macrocycles by Candida antarctica lipase B. Polymer Chemistry, 2013, 4(16): 4312–4316

    Article  CAS  Google Scholar 

  100. Shao Y, Lavigueur C, Zhu X X. Multishape memory effect of norbornene-based copolymers with cholic acid pendant groups. Macromolecules, 2012, 45(4): 1924–1930

    Article  CAS  Google Scholar 

  101. Wang K, Jia Y G, Zhu X X. Biocompound-based multiple shape memory polymers reinforced by photo-cross-linking. ACS Biomaterials Science & Engineering, 2015, 1(9): 855–863

    Article  CAS  Google Scholar 

  102. Serrano M C, Carbajal L, Ameer G A. Novel biodegradable shapememory elastomers with drug-releasing capabilities. Advanced Materials, 2011, 23(19): 2211–2215

    Article  CAS  PubMed  Google Scholar 

  103. Yang C S, Wu H C, Sun J S, Hsiao H M, Wang T W. Thermoinduced shape-memory PEG-PCL copolymer as a dual-drugeluting biodegradable stent. ACS Applied Materials & Interfaces, 2013, 5(21): 10985–10994

    Article  CAS  Google Scholar 

  104. Zhang H, Wang H, Zhong W, Du Q. A novel type of shape memory polymer blend and the shape memory mechanism. Polymer, 2009, 50(6): 1596–1601

    Article  CAS  Google Scholar 

  105. Chen M C, Tsai H W, Chang Y, Lai W Y, Mi F L, Liu C T, Wong H S, Sung H W. Rapidly self-expandable polymeric stents with a shape-memory property. Biomacromolecules, 2007, 8(9): 2774–2780

    Article  CAS  PubMed  Google Scholar 

  106. Small W L V, Wilson T S, Benett W J, Loge J M, Maitland D J. Laser-activated shape memory polymer intravascular thrombectomy device. Optics Express, 2005, 13(20): 8204–8213

    Article  Google Scholar 

  107. Bellin I, Kelch S, Langer R, Lendlein A. Polymeric triple-shape materials. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(48): 18043–18047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gong T, Zhao K, Liu X, Lu L, Liu D, Zhou S. A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization. Small, 2016, 12(41): 5769–5778

    Article  CAS  PubMed  Google Scholar 

  109. Kabir M H, Hazama T, Watanabe Y, Gong J, Murase K, Sunada T, Furukawa H. Smart hydrogel with shape memory for biomedical applications. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(6): 3134–3138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from NSERC of Canada and FQRNT of Quebec is gratefully acknowledged. K. Wang is grateful to the China Scholarship Council for a scholarship. The authors are members of CSACS funded by FQRNT and GRSTB funded by FRSQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. X. Zhu.

Additional information

X. X. Zhu received his B.Sc. degree in chemistry from Nankai University in China, and his Ph.D. degree from McGill University in Canada. After postdoctoral work at CNAM, France and the University of Toronto, he joined the Department of Chemistry, University of Montreal, where he is a full professor and holds the Research Chair in Polymeric Biomaterials. He and his group focus on the development of polymeric biomaterials for biomedical and pharmaceutical applications, particularly the use of natural compounds such as bile acids in the preparation of new polymers. He received the Macromolecular Science and Engineering Award from the Chemical Institute of Canada in 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Strandman, S. & Zhu, X.X. A mini review: Shape memory polymers for biomedical applications. Front. Chem. Sci. Eng. 11, 143–153 (2017). https://doi.org/10.1007/s11705-017-1632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1632-4

Keywords

Navigation