Skip to main content
Log in

Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS’s physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers’ designing, such as microcell- carriers, micro-drug-carriers, etc., are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klemm D, Heublein B, Fink H P, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 2005, 44(22): 3358–3393

    Article  CAS  PubMed  Google Scholar 

  2. Goh C S, Tan K T, Lee K T, Bhatia S. Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource Technology, 2010, 101(13): 4834–4841

    Article  CAS  PubMed  Google Scholar 

  3. Koo B, Kim H, Cho Y, Lee K T, Choi N S, Cho J. A highly crosslinked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angewandte Chemie International Edition, 2012, 51(35): 8762–8767

    Article  CAS  PubMed  Google Scholar 

  4. Chang C, Zhang L. Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 2011, 84(1): 40–53

    Article  CAS  Google Scholar 

  5. Kubo Y, Nakajima O, Ogawa K. EP Patent, 2811544A1, 2014–12-10

    Google Scholar 

  6. Zhang L X, Liu Z H, Cui G L, Chen L Q. Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43: 136–164

    Article  CAS  Google Scholar 

  7. Kadokawa J. Precision polysaccharide synthesis catalyzed by enzymes. Chemical Reviews, 2011, 111(7): 4308–4345

    Article  CAS  PubMed  Google Scholar 

  8. Andrade D, Mendonca MH, Helm C V, Magalhaes W, de Muniz G, Kestur S G. Assessment of nano cellulose from peach palm residue as potential food additive: Part II: Preliminary studies. Journal of Food Science and Technology-Mysore, 2015, 52(9): 5641–5650

    Article  CAS  Google Scholar 

  9. Gomez H C, Serpa A, Velasquez-Cock J, Ganan P, Castro C, Velez L, Zuluaga R. Vegetable nanocellulose in food science: A review. Food Hydrocolloids, 2016, 57: 178–186

    Article  CAS  Google Scholar 

  10. Garcia-Zapateiro L A, Valencia C, Franco J M. Formulation of lubricating greases from renewable basestocks and thickener agents: A rheological approach. Industrial Crops and Products, 2014, 54: 115–121

    Article  CAS  Google Scholar 

  11. Al-Ibraheemi Z, Anuar M S, Taip F S, Amin M, Tahir S M, Mahdi A B. Deformation and mechanical characteristics of compacted binary mixtures of plastic (microcrystalline cellulose), elastic (sodium starch glycolate), and brittle (lactose monohydrate) pharmaceutical excipients. Particulate Science and Technology, 2013, 31(6): 561–567

    Article  CAS  Google Scholar 

  12. Ojala J, Sirvio J A, Liimatainen H. Nanoparticle emulsifiers based on bifunctionalized cellulose nanocrystals as marine diesel oil-water emulsion stabilizers. Chemical Engineering Journal, 2016, 288: 312–320

    Article  CAS  Google Scholar 

  13. Oun A A, Rhim J W. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulosebased nanocomposite films. Carbohydrate Polymers, 2016, 150: 187–200

    Article  CAS  PubMed  Google Scholar 

  14. Ma X, Lv M, Anderson D P, Chang P R. Natural polysaccharide composites based on modified cellulose spheres and plasticized chitosan matrix. Food Hydrocolloids, 2017, 66: 276–285

    Article  CAS  Google Scholar 

  15. Schweiger R G. Polysaccharide sulfates. I. Cellulose sulfate with a high degree of substitution. Carbohydrate Research, 1972, 21(2): 219–228

    CAS  Google Scholar 

  16. Brewer R J, Tenn K. US Patent, 4480091, 1984–10-30

    Google Scholar 

  17. Usher T C, Patel N, Tele C G. US Patent, 5378828, 1995–01-03

    Google Scholar 

  18. Hettrich K, Wagenknecht W, Volkert B, Fischer S. New possibilities of the acetosulfation of cellulose. Macromolecular Symposia, 2008, 262(1): 162–169

    Article  CAS  Google Scholar 

  19. Sparrow D B, Powers W R. US Patent, 2862922, 1958–12-02

    Google Scholar 

  20. Yao S J. An improved process for the preparation of sodium cellulose sulphate. Chemical Engineering Journal, 2000, 78(2–3): 199–204

    Article  CAS  Google Scholar 

  21. Yao S J, Lin D Q, Fang L. CN Patent, 101274964B, 2010–11-03

    Google Scholar 

  22. Yao S J. Verfahrenstechnische auslegung einer anlage fuer die natrium-cellulosesulfatherstellung zur immobiliserung von biokatalysatoren. Dissertation for the Doctoral Degree. Berlin: Technical University of Berlin, 1996, 57–90

    Google Scholar 

  23. Anderson R A, Zaneveld L J D, Usher T C. US Patent, 6063773, 2000–05-16

    Google Scholar 

  24. Okajima K, Kamide K, Matsui T. EP Patent, 0053473A1, 1981–11-25

    Google Scholar 

  25. Yoshida T. Synthesis of polysaccharides having specific biological activities. Progress in Polymer Science, 2001, 26(3): 379–441

    Article  CAS  Google Scholar 

  26. Yoshida T, Kang B W, Hattori K, Mimura T, Kaneko Y, Nakashima H, Premanathan M, Aragaki R, Yamamoto N, Uryu T. Anti-HIV activity of sulfonated arabinofuranan and xylofuranan. Carbohydrate Polymers, 2001, 42(2): 141–150

    Article  Google Scholar 

  27. Anderson R A, Feathergill K A, Diao X H, Cooper MD, Kirkpatrick R, Herold B C, Doncel G F, Chany C J, Waller D P, Rencher W F, et al. Preclinical evaluation of sodium cellulose sulfate (Ushercell) as a contraceptive antimicrobial agent. Journal of Andrology, 2002, 23(3): 426–438

    CAS  PubMed  Google Scholar 

  28. Anderson R A, Feathergill K, Diao X H, Chany C II, Rencher W F, Zaneveld L, Waller D P. Contraception by Ushercell (TM) (cellulose sulfate) in formulation: Duration of effect and dose effectiveness. Contraception, 2004, 70(5): 415–422

    Article  CAS  PubMed  Google Scholar 

  29. Zaneveld L J D, Anderson R A, Usher T C. US Patent, 7078392B2, 2006–07-18

    Google Scholar 

  30. Baleta A. Disappointment at failure of microbicide candidate. Lancet Infectious Diseases, 2008, 8(4): 221–221

    Article  Google Scholar 

  31. Tao W, Richards C, Hamer D. Short communication—enhancement of HIV infection by cellulose sulfate. AIDS Research and Human Retroviruses, 2008, 24(7): 925–929

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pirrone V, Passic S, Wigdahl B, Krebs F. Clinical failures of select polyanionic microbicide candidates may be predicted by in vitro enhancement of HIV-1 infection. Antiviral Research, 2009, 82(2): A65–A66

    Article  Google Scholar 

  33. Pirrone V, Wigdahl B, Krebs F C. The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1. Antiviral Research, 2011, 90(3): 168–182

    Article  CAS  PubMed  Google Scholar 

  34. Agarwal H K, Kumar A, Doncel G F, Parang K. Synthesis, antiviral and contraceptive activities of nucleoside-sodium cellulose sulfate acetate and succinate conjugates. Bioorganic & Medicinal Chemistry Letters, 2010, 20(23): 6993–6997

    Article  CAS  Google Scholar 

  35. Wang M J, Xie Y L, Zheng Q D, Yao S J. A novel, potential microflora-activated carrier for a colon-specific drug delivery system and its characteristics. Industrial & Engineering Chemistry Research, 2009, 48(11): 5276–5284

    Article  CAS  Google Scholar 

  36. Zhu L Y, Lin D Q, Yao S J. Biodegradation of polyelectrolyte complex films composed of chitosan and sodium cellulose sulfate as the controllable release carrier. Carbohydrate Polymers, 2010, 82(2): 323–328

    Article  CAS  Google Scholar 

  37. Rohowsky J, Heise K, Fischer S, Hettrich K. Synthesis and characterization of novel cellulose ether sulfates. Carbohydrate Polymers, 2016, 142: 56–62

    Article  CAS  PubMed  Google Scholar 

  38. Gericke M, Liebert T, Heinze T. Interaction of ionic liquids with polysaccharides, 8-synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromolecular Bioscience, 2009, 9(4): 343–353

    Article  CAS  PubMed  Google Scholar 

  39. Wang M J. Study on NaCS used for vegetable capsule and colontargeted drug delivery capsule. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University, 2010, 29–38 (in Chinese)

    Google Scholar 

  40. Zhang K, Peschel D, Baeucker E, Groth T, Fischer S. Synthesis and characterisation of cellulose sulfates regarding the degrees of substitution, degrees of polymerisation and morphology. Carbohydrate Polymers, 2011, 83(4): 1659–1664

    Article  CAS  Google Scholar 

  41. Chen G, Zhang B, Zhao J, Chen H. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution. Carbohydrate Polymers, 2013, 95(1): 332–337

    Article  CAS  PubMed  Google Scholar 

  42. John A A, Subramanian A P, Vellayappan M V, Balaji A, Jaganathan S K, Mohandas H, Paramalinggam T, Supriyanto E, Yusof M. Review: Physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials. RSC Advances, 2015, 5(49): 39232–39244

    Article  CAS  Google Scholar 

  43. Mei L H, Yao S J. Cultivation and modelling of encapsulated Saccharomyces cerevisiae in NaCS-PDMDAAC polyelectrolyte complexes. Journal of Microencapsulation, 2002, 19(4): 397–405

    Article  CAS  PubMed  Google Scholar 

  44. Mei L H, Yao S J, Lin D Q, Cen P L, Zhu Z Q. Biocompatibility of NaCS and PDADMAC microcapsules with Bacillus thuringiensis. CIESC Journal, 1999, 50(5): 592–597

    CAS  Google Scholar 

  45. Mei L H, Lin D Q, Yao S J, Han Z X. Study on immobilization of bacillus thuringiensis by microencapsules of NaCS and PDADMAC. Journal of Zhejiang University (Engineering Science), 2000, 34(6): 694–695 (in Chinese)

    CAS  Google Scholar 

  46. Zhang J, Yao S J, Guan Y X. Preparation of macroporous sodium cellulose sulphate/poly(dimethyldiallylammonium chloride) capsules and their characteristics. Journal of Membrane Science, 2005, 255(1–2): 89–98

    Article  CAS  Google Scholar 

  47. Dautzenberg H, Schuldt U, Grasnick G, Karle P, Muller P, Lohr M, Pelegrin M, Piechaczyk M, Rombs K V, Gunzburg W H, et al. Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications. Annals of the New York Academy of Sciences, 1999, 875(1): 46–63

    Article  CAS  PubMed  Google Scholar 

  48. Salmons B, Gunzburg W H. Therapeutic application of cell microencapsulation in cancer. Berlin: Springer-Verlag Press, 2010, 92–103

    Book  Google Scholar 

  49. Yildirimer L, Seifalian A M. Three-dimensional biomaterial degradation—material choice, design and extrinsic factor considerations. Biotechnology Advances, 2014, 32(5): 984–999

    Article  CAS  PubMed  Google Scholar 

  50. Macy J M, Farrand J R, Montgomery L. Cellulolytic and noncellulolytic bacteria in rat gastrointestinal tracts. Applied and Environmental Microbiology, 1982, 44(6): 1428–1434

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Robert C, Bernalier-Donadille A. The cellulolytic microflora of the human colon: Evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiology Ecology, 2003, 46(1): 81–89

    Article  CAS  PubMed  Google Scholar 

  52. Wu Q X, Li MZ, Yao S J. Performances of NaCS-WSC protein drug microcapsules with different degree of substitution of NaCS using sodium polyphosphate as cross-linking agent. Cellulose (London, England), 2014, 21(3): 1897–1908

    CAS  Google Scholar 

  53. Zhu L Y. Study on colon-specific drug delivery carrier based on chitosan and sodium cellulose sulfate. Dissertation for the Doctoral Degree.Hangzhou: Zhejiang University, 2011, 20–24 (in Chinese)

    Google Scholar 

  54. Zhang K, Brendler E, Fischer S F T. Raman investigation of sodium cellulose sulfate. Cellulose (London, England), 2010, 17(2): 427–435

    Google Scholar 

  55. Wang M J, Yao S J. Determination of molecular weight of sodium cellulose sulfate by low angle laser light scattering. Chinese Journal of Process Engineering, 2009, 9(6): 1159–1163 (in Chinese)

    CAS  Google Scholar 

  56. Zhang Q L, Lin D Q, Yao S J. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydrate Polymers, 2015, 132: 311–322

    Article  CAS  PubMed  Google Scholar 

  57. Mei L H, Yao J T, Yao S J. Immobilized culture of Bacillus subtilis in NACS-PDMDAAC microcapsules for production of new antithrombus enzyme. CIESC Journal, 2000, 51(6): 814–817

    CAS  Google Scholar 

  58. Zhang Z R, Zheng Q D, Yao S J. Cultivation of encapsulated Monascus purpureus in NaCS-PDMDAAC capsules. Food and Fermentation Industries, 2003, 29(11): 1–4

    Google Scholar 

  59. Mei L H, Zhang X Z, Ai B Y, Sheng Q, Lin D Q, Yao S J, Zhu Z Q. Immobilized culture of Bacillus subtilis in SA/CS-CaCl2/PMCG microcapsule for production of nattokinase. CIESC Journal, 2004, 55(8): 1319–1323

    CAS  Google Scholar 

  60. Mei L H, Yang J L, Zhong C H, Lin D Q, Yao S J. Cultivation of Brevibacterium flavum in new microcapsule system and production of glutamic acid. Journal of Zhejiang University (Engineering Science), 2005, 39(9): 1400–1403 (in Chinese)

    CAS  Google Scholar 

  61. Ji Y Y, Yao S J, Zhang J, Guan Y X, Lin D Q. Cultivation of encapsulated C.valida for producing lipase in macro-porous NaCSPDMDAAC microcapsules. CIESC Journal, 2005, 56(11): 2162–2165

    CAS  Google Scholar 

  62. Zhao Y N, Chen G, Yao S J. Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochemical Engineering Journal, 2006, 32(2): 93–99

    Article  CAS  Google Scholar 

  63. Chen G, Zhao Y N, Huang H, Yao S J. 1,3-Propanediol production from glycerol by Klebsiella pneumoniae encapsulated in NACS/PDMDAAC capsules. CIESC Journal, 2006, 57(12): 2933–2937

    CAS  Google Scholar 

  64. Chen G, Zhao Y N, Yao S J, Fang B S. Production of 1,3-propanediol by co-culture of two immobilized microbes in series. Journal of Beijing University of Chemical Technology, 2007, 34(6): 640–644 (in Chinese)

    CAS  Google Scholar 

  65. Ma Q L, Lin D Q, Yao S J. Immobilization of mixed bacteria by microcapsulation for hydrogen production—a trial of pseudo “Cell Factory”. Chinese Journal of Biotechnology, 2010, 26(10): 1444–1450

    CAS  PubMed  Google Scholar 

  66. Lohr M, Muller P, Karle P, Stange J, Mitzner S, Jesnowski R, Nizze H, Nebe B, Liebe S, Salmons B, Gunzburg W H. Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cyto-chrome P450. Gene Therapy, 1998, 5(8): 1070–1078

    Article  CAS  PubMed  Google Scholar 

  67. Weber W, Rinderknecht M, Baba M, de Glutz F N, Aubel D, Fussenegger M. CellMAC: A novel technology for encapsulation of mammalian cells in cellulose sulfate/pDADMAC capsules assembled on a transient alginate/Ca2+ scaffold. Journal of Biotechnology, 2004, 114(3): 315–326

    Article  CAS  PubMed  Google Scholar 

  68. Stiegler P B, Stadlbauer V, Schaffellner S, Halwachs G, Lackner C, Hauser O, Iberer F, Tscheliessnigg K. Cryopreservation of insulinproducing cells microencapsulated in sodium cellulose sulfate. Transplantation Proceedings, 2006, 38(9): 3026–3030

    Article  CAS  PubMed  Google Scholar 

  69. Stiegler P, Matzi V, Pierer E, Hauser O, Schaffellner S, Renner H, Greilberger J, Aigner R, Maier A, Lackner C, Iberer F, Smolle-Jüttner F M, Tscheliessnigg K, Stadlbauer V. Creation of a prevascularized site for cell transplantation in rats. Xenotransplantation, 2010, 17(5): 379–390

    Article  PubMed  Google Scholar 

  70. Zeng X H, Danquah M K, Zheng C, Potumarthi R, Chen X D, Lu Y H. NaCS-PDMDAAC immobilized autotrophic cultivation of Chlorella sp. for wastewater nitrogen and phosphate removal. Chemical Engineering Journal, 2012, 187: 185–192

    Article  CAS  Google Scholar 

  71. Wu Q X, Lin D Q, Yao S J. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Marine Drugs, 2014, 12(12): 6236–6253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu Q X, Yao S J. Novel NaCS-CS-PPS microcapsules as a potential enzyme-triggered release carrier for highly-loading 5-ASA. Colloids and Surfaces. B, Biointerfaces, 2013, 109: 147–153

    Article  CAS  PubMed  Google Scholar 

  73. Wu Q X, Zhang Q L, Lin D Q, Yao S J. Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. International Journal of Pharmaceutics, 2013, 455(1–2): 124–131

    Article  CAS  PubMed  Google Scholar 

  74. Xie Y L, Wang M J, Yao S J. Layer-by-layer self-assembly complex membrane composed of sodium cellulose sulfate-chitosan. CIESC Journal, 2008, 59(11): 2910–2915

    CAS  Google Scholar 

  75. Xie Y L, Wang M J, Yao S J. Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir, 2009, 25(16): 8999–9005

    Article  CAS  PubMed  Google Scholar 

  76. Sugiura S, Nakajima M, Tong J, Nabetani H, Seki M. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. Journal of Colloid and Interface Science, 2000, 227(1): 95–103

    Article  CAS  PubMed  Google Scholar 

  77. Wu Q X, Lin D Q, Yao S J. Fabrication and formation studies on single-walled CA/NaCS-WSC microcapsules. Materials Science & Engineering C-Materials for Biological Applications, 2016, 59: 909–915

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by China Postdoctoral Science Foundation (No. 2017M611998), the National Natural Science Foundation of China (Grant Nos. 21606002 and 21576233), the Natural Science Foundation of Anhui Province (CN) (No. 1708085QC64), the Doctoral Research Start-up Fund of Anhui University (J01001319), and the Undergraduate Research Training Programs for Innovation (Nos. KYXL2017036, 201710357034 and 201710357268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-Jing Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, QX., Guan, YX. & Yao, SJ. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing. Front. Chem. Sci. Eng. 13, 46–58 (2019). https://doi.org/10.1007/s11705-018-1723-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1723-x

Keywords

Navigation