Skip to main content
Log in

Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium-sulfur batteries

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Hierarchically-porous carbon nano sheets were prepared as a conductive additive for sulfur/polyacrylonitrile (S/PAN) composite cathodes using a simple heat treatment. In this study, kombucha (that was derived from symbiotic culture of bacteria and yeast) carbon (KC) and graphene oxide (GO) were used as a carbon host matrix. These rational-designed S/PAN/KC/GO hybrid composites greatly suppress the diffusion of polysulfides by providing strong physical and chemical adsorption. The cathode delivered an initial discharge capacity of 1652 mAh·g−1 at a 0.1 C rate and a 100th cycle capacity of 1193 mAh·g−1. The nano sheets with embedded hierarchical pores create a conductive network that provide effective electron transfer and fast electrochemical kinetics. Further, the nitrogen component of PAN can raise the affinity/interaction of the carbon host with lithium polysulfides, supporting the cyclic performance. The results exploit the cumulative contribution of both the conductive carbon matrix and PAN in the enhanced performance of the positive electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652–657

    CAS  PubMed  Google Scholar 

  2. Whittingham M S. Lithium batteries and cathode materials. Chemical Reviews, 2004, 104(10): 4271–4302

    CAS  PubMed  Google Scholar 

  3. Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future. Energy & Environmental Science, 2011, 4(9): 3287–3295

    CAS  Google Scholar 

  4. Bruce P G, Freunberger S A, Hardwick L J, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nature Materials, 2012, 11(1): 19–29

    CAS  Google Scholar 

  5. Sivakumar M, Muruganantham R, Subadevi R. Investigations on the rate performance of LiFePO4/CeO2 composite materials via polyol technique for rechargeable lithium batteries. RSC Advances, 2015, 5(105): 86126–86136

    CAS  Google Scholar 

  6. Jayaprakash N, Shen J, Moganty S S, Corona A, Archer L A. Porous hollow carbon@ sulfur composites for high-ower lithium-sulfur batteries. Angewandte Chemie International Edition, 2011, 50(26): 5904–5908

    CAS  PubMed  Google Scholar 

  7. Ji X, Nazar L F. Advances in Li-S batteries. Journal of Materials Chemistry, 2010, 20(44): 9821–9826

    CAS  Google Scholar 

  8. Liang C, Zhang X, Zhao Y, Tan T, Zhang Y, Chen Z. Preparation of hierarchical porous carbon from waterweed and its application in lithium/sulfur batteries. Energies, 2018, 11(6): 1535

    Google Scholar 

  9. Peng H J, Huang J Q, Zhao M Q, Zhang Q, Cheng X B, Liu X Y, Qian W Z, Wei F. Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Advanced Functional Materials, 2014, 24(19): 2772–2781

    CAS  Google Scholar 

  10. Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbonsulphur cathode for lithium-sulphur batteries. Nature Materials, 2009, 8(6): 500–506

    CAS  PubMed  Google Scholar 

  11. Li Z, Zhang J, Guan B, Wang D, Liu LM, Lou XWD. A sulfur host based on titanium monoxide @ carbon hollow spheres for advanced lithium-sulfur batteries. Nature Communications, 2016, 7(1): 13065

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu R, Chen S, Deng J, Huang X, Song Y, Gan R, Wan X, Wei Z. Hierarchically porous nitrogen-doped carbon as cathode for lithiumsulfur batteries. Journal of Energy Chemistry, 2018, 27(6): 1661–1667

    Google Scholar 

  13. Zhang J, Yang C P, Yin Y X, Wan L J, Guo Y G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithiumsulfur batteries. Advanced Materials, 2016, 28(43): 9539–9544

    CAS  PubMed  Google Scholar 

  14. Zhang C, Lu C, Bi S, Hou Y, Zhang F, Cai M, He Y, Paasch S, Feng X, Brunner E, Zhuang X. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion. Frontiers of Chemical Science and Engineering, 2018, 12(3): 346–357

    CAS  Google Scholar 

  15. Radhika G, Subadevi R, Krishnaveni K, Liu W R, Sivakumar M. Synthesis and electrochemical performance of PEG-MnO2-sulfur composites cathode materials for lithium sulfur batteries. Journal of Nanoscience and Nanotechnology, 2018, 18(1): 127–131

    CAS  PubMed  Google Scholar 

  16. Wang K, Pang J, Li L, Zhou S, Li Y, Zhang T. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Frontiers of Chemical Science and Engineering, 2018, 12(3): 376–382

    CAS  Google Scholar 

  17. Gong G, Pyo J, Mathew A P, Oksman K. Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiberreinforced (CNF) polyvinyl acetate (PVAc). Composites. Part A, Applied Science and Manufacturing, 2011, 42(9): 1275–1282

    Google Scholar 

  18. Li W, Zhang Q, Zheng G, Seh Z W, Yao H, Cui Y. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Letters, 2013, 13(11): 5534–5540

    CAS  PubMed  Google Scholar 

  19. Kong L, Li B Q, Peng H J, Zhang R, Xie J, Huang J Q, Zhang Q. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries. Advanced Energy Materials, 2018, 8(20): 1800849

    Google Scholar 

  20. Fu Y, Manthiram A. Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium-sulfur batteries. Journal of Physical Chemistry C, 2012, 116(16): 8910–8915

    CAS  Google Scholar 

  21. Zhou W, Xiao X, Cai M, Yang L. Polydopamine-coated, nitrogendoped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries. Nano Letters, 2014, 14(9): 5250–5256

    CAS  PubMed  Google Scholar 

  22. Zhang Y, Zhao Y, Yermukhambetova A, Bakenov Z, Chen P. Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(2): 295–301

    CAS  Google Scholar 

  23. Krishnaveni K, Subadevi R, Sivakumar M. A solution-processed binary composite as a cathode material in lithium-sulfur batteries. Applied Physics. A, Materials Science & Processing, 2019, 125(7): 469

    CAS  Google Scholar 

  24. Wei S, Ma L, Hendrickson K E, Tu Z, Archer L A. Metal-sulfur battery cathodes based on PAN-sulfur composites. Journal of the American Chemical Society, 2015, 137(37): 12143–12152

    CAS  PubMed  Google Scholar 

  25. Balakumar K, Sathish R, Kalaiselvi N. Exploration of microporous bio-carbon scaffold for efficient utilization of sulfur in lithium-sulfur system. Electrochimica Acta, 2016, 209: 171–182

    CAS  Google Scholar 

  26. Balakumar K, Kalaiselvi N. High sulfur loaded carbon aerogel cathode for lithium-sulfur batteries. RSC Advances, 2015, 5(43): 34008–34018

    CAS  Google Scholar 

  27. Chen M, Jiang S, Huang C, Xia J, Wang X, Xiang K, Zeng P, Zhang Y, Jamil S. Synergetic effects of multifunctional composites with more efficient polysulfide immobilization and ultrahigh sulfur content in lithium-sulfur batteries. ACS Applied Materials & Interfaces, 2018, 10(16): 13562–13572

    CAS  Google Scholar 

  28. Wang Z, Dong Y, Li H, Zhao Z, Wu H B, Hao C, Liu S, Qiu J, Lou X W. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature Communications, 2014, 5(1): 5002

    CAS  PubMed  Google Scholar 

  29. Krishnaveni K, Subadevi R, Sivakumar M, Raja M, Prem Kumar T. Synthesis and characterization of graphene oxide capped sulfur/polyacrylonitrile composite cathode by simple heat treatment. Journal of Sulfur Chemistry, 2019, 40(4): 377–388

    CAS  Google Scholar 

  30. Shi Y, Lv W, Niu S, He Y, Zhou G, Chen G, Li B, Yang Q H, Kang F. A carbon-sulfur hybrid with pomegranate-like structure for lithium-sulfur batteries. Chemistry, an Asian Journal, 2016, 11(9): 1343–1347

    CAS  PubMed  Google Scholar 

  31. Rajkumar P, Diwakar K, Radhika G, Krishnaveni K, Subadevi R, Sivakumar M. Effect of silicon dioxide in sulfur/carbon black composite as a cathode material for lithium sulfur batteries. Vacuum, 2019, 161: 37–48

    CAS  Google Scholar 

  32. Wang J, Yang J, Wan C, Du K, Xie J, Xu N. Sulfur composite cathode materials for rechargeable lithium batteries. Advanced Functional Materials, 2003, 13(6): 487–492

    CAS  Google Scholar 

  33. Yin L, Wang J, Lin F, Yang J, Nuli Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for highrate rechargeable Li-S batteries. Energy & Environmental Science, 2012, 5(5): 6966–6972

    CAS  Google Scholar 

  34. Wang J, Yang J, Xie J, Xu N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Advanced Materials, 2002, 14(13-14): 963–965

    CAS  Google Scholar 

  35. Yin L, Wang J, Yang J, Nuli Y. A novel pyrolyzed polyacrylonitrilesulfur@ MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. Journal of Materials Chemistry, 2011, 21(19): 6807–6810

    CAS  Google Scholar 

  36. Krishnaveni K, Subadevi R, Raja M. Sulfur/PAN/acetylene black composite prepared by a solution processing technique for lithiumsulfur batteries. Journal of Applied Polymer Science, 2018, 135(34): 46598

    Google Scholar 

  37. Wei W, Wang J, Zhou L, Yang J, Schumann B, Nuli Y. CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochemistry Communications, 2011, 13(5): 399–402

    CAS  Google Scholar 

  38. Ye J, He F, Nie J, Cao Y, Yang H, Ai X. Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium-sulfur batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(14): 7406–7412

    CAS  Google Scholar 

  39. Krishnaveni K, Subadevi R, Radhika G, Premkumar T, Raja M, Liu W R, Sivakumar M. Carbon wrapping effect on sulfur/polyacrylonitrile composite cathode materials for lithium sulfur batteries. Journal of Nanoscience and Nanotechnology, 2018, 18(1): 121–126

    CAS  PubMed  Google Scholar 

  40. Kim J W, Ocon J D, Park D W, Lee J. Enhanced reversible capacity of Li-S battery cathode based on graphene oxide. Journal of Energy Chemistry, 2013, 22(2): 336–340

    CAS  Google Scholar 

  41. Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns E J, Zhang Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society, 2011, 133(46): 18522–18525

    CAS  PubMed  Google Scholar 

  42. Li K, Wang B, Su D, Park J, Ahn H, Wang G. Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique. Journal of Power Sources, 2012, 202: 389–393

    CAS  Google Scholar 

  43. Hwang T H, Jung D S, Kim J S, Kim B G, Choi J W. Onedimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. Nano Letters, 2013, 13(9): 4532–4538

    CAS  PubMed  Google Scholar 

  44. Johra F T, Lee JW, Jung WG. Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2883–2887

    CAS  Google Scholar 

  45. Gurunathan S, Han J W, Dayem A A, Eppakayala V, Kim J H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International Journal of Nanomedicine, 2012, 7: 5901

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo J, Xu Y, Wang C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Letters, 2011, 11(10): 4288–4294

    CAS  PubMed  Google Scholar 

  47. Lee J T, Zhao Y, Thieme S, Kim H, Oschatz M, Borchardt L, Magasinski A, Cho W I, Kaskel S, Yushin G. Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries. Advanced Materials, 2013, 25(33): 4573–4579

    CAS  PubMed  Google Scholar 

  48. Yushin G, Dash R, Jagiello J, Fischer J E, Gogotsi Y. Carbidederived carbons: Effect of pore size on hydrogen uptake and heat of adsorption. Advanced Functional Materials, 2006, 16(17): 2288-2293

  49. Rehman S, Tang T, Ali Z, Huang X, Hou Y. Integrated design of MnO2@ carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small, 2017, 13(20): 1700087

    Google Scholar 

  50. Ni L, Wu Z, Zhao G, Sun C, Zhou C, Gong X, Diao G. Core-shell structure and interaction mechanism of γ-MnO2 coated sulfur for improved lithium-sulfur batteries. Small, 2017, 13(14): 1603466

    Google Scholar 

  51. Pang Q, Tang J, Huang H, Liang X, Hart C, Tam K C, Nazar L F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@ cellulose for advanced lithium-sulfur batteries. Advanced Materials, 2015, 27(39): 6021–6028

    CAS  PubMed  Google Scholar 

  52. Zhao J, Pei S, Ren W, Gao L, Cheng H M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 2010, 4(9): 5245–5252

    CAS  PubMed  Google Scholar 

  53. Zhou G, Yin L C, Wang DW, Li L, Pei S, Gentle I R, Li F, Cheng H M. Fibrous hybrid of graphene and sulfur nanocrystals for highperformance lithium-sulfur batteries. ACS Nano, 2013, 7(6): 5367–5375

    CAS  PubMed  Google Scholar 

  54. Yuan S, Guo Z, Wang L, Hu S, Wang Y, Xia Y. Leaf-like grapheneoxide-wrapped sulfur for high-performance lithium-sulfur battery. Advancement of Science, 2015, 2(8): 1500071

    Google Scholar 

  55. Tang Q, Jiang L, Liu J, Wang S, Sun G. Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catalysis, 2014, 4(2): 457–463

    CAS  Google Scholar 

  56. Chulliyote R, Hareendrakrishnakumar H, Raja M, Gladis J M, Stephan A M. Sulfur-immobilized nitrogen and oxygen co-doped hierarchically porous biomass carbon for lithium-sulfur batteries: Influence of sulfur content and distribution on its performance. ChemistrySelect, 2017, 2(32): 10484–10495

    CAS  Google Scholar 

  57. Liu Y, Zhao X, Chauhan G S, Ahn J H. Nanostructured nitrogendoped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries. Applied Surface Science, 2016, 380: 151–158

    CAS  Google Scholar 

  58. Wu H, Mou J, Zhou L, Zheng Q, Jiang N, Lin D. Cloud cap-like, hierarchically porous carbon derived from mushroom as an excellent host cathode for high performance lithium-sulfur batteries. Electrochimica Acta, 2016, 212: 1021–1030

    CAS  Google Scholar 

  59. Wu Y, Xu C, Guo J, Su Q, Du G, Zhang J. Enhanced electrochemical performance by wrapping graphene on carbon nanotube/sulfur composites for rechargeable lithium-sulfur batteries. Materials Letters, 2014, 137: 277–280

    CAS  Google Scholar 

  60. Guo J, Zhang J, Jiang F, Zhao S, Su Q, Du G. Microporous carbon nanosheets derived from corncobs for lithium-sulfur batteries. Electrochimica Acta, 2015, 176: 853–860

    CAS  Google Scholar 

  61. Zhang J, Xiang J, Dong Z, Liu Y, Wu Y, Xu C, Du G. Biomass derived activated carbon with 3D connected architecture for rechargeable lithium-sulfur batteries. Electrochimica Acta, 2014, 116: 146–151

    CAS  Google Scholar 

  62. Wei S, Zhang H, Huang Y, Wang W, Xia Y, Yu Z. Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries. Energy & Environmental Science, 2011, 4(3): 736–740

    CAS  Google Scholar 

  63. Qin F, Zhang K, Fang J, Lai Y, Li Q, Zhang Z, Li J. High performance lithium sulfur batteries with a cassava-derived carbon sheet as a polysulfides inhibitor. New Journal of Chemistry, 2014, 38(9): 4549–4554

    CAS  Google Scholar 

  64. You X L, Liu L J, Zhang M Y, Walle M D, Li Y, Liu Y N. Novel biomass derived hierarchical porous carbon for lithium sulfur batteries. Materials Letters, 2018, 217: 167–170

    CAS  Google Scholar 

  65. Zhao X, Kim M, Liu Y, Ahn H J, Kim K W, Cho K K, Ahn J H. Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries. Carbon, 2018, 128: 138–146

    CAS  Google Scholar 

  66. Zhao Y, Ren J, Tan T, Babaa M R, Bakenov Z, Liu N, Zhang Y. Biomass waste inspired highly porous carbon for high performance lithium/sulfur batteries. Nanomaterials (Basel, Switzerland), 2017, 7(9): 260

    PubMed Central  Google Scholar 

  67. Feng J, Qin X, Ma Z, Yang J, Yang W, Shao G. A novel acetylene black/sulfur@ graphene composite cathode with unique threedimensional sandwich structure for lithium-sulfur batteries. Electrochimica Acta, 2016, 190: 426–433

    CAS  Google Scholar 

  68. Zhang J, Dong Z, Wang X, Zhao X, Tu J, Su Q, Du G. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries. Journal of Power Sources, 2014, 270: 1–8

    CAS  Google Scholar 

  69. Chen F, Yang J, Bai T, Long B, Zhou X. Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium-sulfur batteries. Electrochimica Acta, 2016, 192: 99–109

    CAS  Google Scholar 

  70. Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565

    CAS  Google Scholar 

Download references

Acknowledgements

All the authors from Alagappa University acknowledge the financial support by DST-SERB, New Delhi under the Physical sciences, grant sanctioned vide EMR/2016/006302. Also, all the authors gratefully acknowledge for extending the analytical facilities in the Department of Physics, Alagappa University under the PURSE and FIST programme, sponsored by Department of Science and Technology (DST), BSR of University Grants Commission (UGC), New Delhi, Government of India and Ministry of Human Resource Development RUSA-Phase 2.0 grant sanctioned vide Lt.No.F-24-51/2014 U Policy (TNMulti Gen), Department of Education, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Marimuthu.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaiappan, K., Rengapillai, S., Marimuthu, S. et al. Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium-sulfur batteries. Front. Chem. Sci. Eng. 14, 976–987 (2020). https://doi.org/10.1007/s11705-019-1897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1897-x

Keywords

Navigation