Skip to main content
Log in

Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The objective of this article is to study the effect of 5-aminolevulinic acid (ALA) and enhanced chlorophyll content, antioxidative enzymes and photosynthesis rate by foliar application of ALA. We evaluated three concentrations (control-distilled water, T1-50 mg l−1, T2-150 mg l−1, T3-250 mg l−1) of ALA and seven cultivars, “Sanchidaye” (Sa-1), “Lichuandasuomian” (Li-1), “Aijiaohuang” (Ai-1), “Qingyou” No. 4 (Qi-1), “Aikang” No. 5 (Ak-1), “Hanxiao” (Ha-1) and “Shulv” (Sl-1). “Ak-1” showed strongest response of POD (peroxidase) enzyme activity (0.4 U g−1 min−1) in 250 mg l−1 ALA solution. The highest CAT (catalase) activity (0.8 U g−1 min−1) after administration of 250 mg l−1 ALA was observed in “Li-1”. Meanwhile, highest (1.42 mg l−1) total chlorophyll content was also observed in “Ak-1”, when leaves were treated in 50 mg l−1 ALA, “Li-1” and “Ai-1” showed strongest response of specific activity of superoxide dismutase (SOD) in 50 mg l−1 and 50 mg l−1 ALA. Two hundred and fifty milligram per milliliter of ALA-treatment significantly improved the net photosynthetic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi HE (1983) Catalase. In: Bergmeyer HU, Bergmeyer J, Grabl M (eds) Methods of enzymatic analysis, vol III, 3rd edn. Verlage Chemie Gmbh, Weinheim, pp 273–286

    Google Scholar 

  • Al-Khateeb SA, Okawara R, Al-Khateeb AA, Al-Abdoulhady IA (2001) Effect of ALA on fruit yield and quality of date palm “CV. Khalas”. In: Second international conference on date palms, Al-Ain, UAE, March 25–27, pp 102–109

  • Anderson JA (2002) Catalase activity, hydrogen peroxide content and thermo tolerance of pepper leaves. Sci Hortic 95:277–284

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Boo YC, Jung J (1999) Water deficit-induced oxidative stress and antioxidant defenses in rice plants. J Plant Physiol 155:255–261

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brunham BF, Lascelles J (1963) Control of porphyrin biosynthesis through a negative-feedback mechanism. Studies with preparations of 5-aminolevulate synthetase and B-ALA dehydratase from Rhodopseudomonas spheroides. Biochem J 87:462–472

    Google Scholar 

  • Beyer WF, Fridowich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  PubMed  CAS  Google Scholar 

  • Feierabend J (1977) Capacity for chlorophyll synthesis in heat bleached 70S ribosome-deficient rye leaves. Planta 135:83–88

    Article  CAS  Google Scholar 

  • Granick S (1961) Magnesium protoporphyrin monoester and protoporphyrin monomethyl ester in chlorophyll biosynthesis. J Biol Chem 236:1168–1172

    PubMed  CAS  Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997) New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content and plant growth. Biosci Biotech Biochem 61(2):2025–2028

    Article  CAS  Google Scholar 

  • Hotta Y, Tanaka T, Bingshan L, Takeuchi Y, Konnai M (1998) Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. J Pestic Sci 23:29–33

    CAS  Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M, Al-Khateeb SAR (2004) Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul 22(2):109–114

    Article  Google Scholar 

  • Ilag LL, Kumar AM, Söll D (1994) Light regulation of chlorophyll biosynthesis at the leve1 of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6:265–275

    Article  PubMed  CAS  Google Scholar 

  • Jacobs NJ (1977) Biosynthesis of heme. In: Neilands JB (ed) Microbial iron metabolism. Academic Press, New York, pp 125–148

    Google Scholar 

  • Jeffrey AA, Sonali RP (2004) Protein aggregation, radical scavenging capacity, and stability of hydrogen peroxide defense systems in heat stressed Vinca and sweet pea leaves. J Am Soc Hortic Sci 129(1):54–59

    Google Scholar 

  • Larkcom J (1991) Oriental vegetables. John Murray (Publishers) Ltd, London

    Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Li BR (1985) Varietal trial on Pak-choi. ARC Training, Report 1–5

  • MacRae EA, Ferguson IB (1985) Changes in catalase activity and hydrogen peroxide concentration in plants in response to low temperature. Physiol Plant 65:51–56

    Article  CAS  Google Scholar 

  • Nishihara E, Kondo K, Parvez MM, Takahashi K, Watanabe K, Tanaka K (2003) Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinaciao leracea). J Plant Physiol 160:1085–1091

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HT, Joshi PC (1992) Molecular strategies for the genetic dissection of water and high-temperature stress adaptation in cereal crops. In: Proceedings of an international symposium on the adaptation of food crops to temperature and water stress, 13–18 August 1992, Taipei, Taiwan, pp 1–19

  • Putter J (1974) Peroxidases. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 685–690

    Google Scholar 

  • Rebeiz CA, Montazer ZA, Hoppen H, Wu SM (1984) Photodynamic herbicide. I. Concept and phenomenology. Enzyme Microb Technol 6:390–401

    Article  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  • Scandalios JG, Tsaftaris AS, Chandlee JM, Skadsen RM (1984) Expression of the developmentally regulated catalase (Cat) genes in maize. Dev Genet 4:281–293

    Article  CAS  Google Scholar 

  • Senge MO (1993) Recent advances in the biosynthesis and chemistry of chlorophylls. Photochem Phytobiol 57:189–206

    Article  CAS  Google Scholar 

  • Shemin D, Russell CS (1953) 5-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J Am Chem Soc 75:4873–4874

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC (2000) Induction of oxidative stress and antioxidant activity by hydrogen peroxide treatment in tolerant and susceptible wheat genotypes. Biol Plant 43:381–386

    Article  CAS  Google Scholar 

  • Tanaka T, Takahashi K, Hotta T, Takeuchi Y, Konnai M (1992) Promotive effects of 5-aminolevulinic acid on yield of several crops. In: Proceedings of the 19th annual meeting of plant growth regulator Society of America, San Francisco. Plant Growth Regulator Society of America, Washington DC, pp 237–241

  • Tanaka Y, Tanaka A, Tsuji H (1992) Stabilization of apoproteins of light-harvesting chlorophyll-a/b protein complex by feeding 5-aminolevulinic acid under intermittent illumination. Plant Physiol Biochem 30:365–370

    CAS  Google Scholar 

  • Tanaka Y, Tanaka A, Tsuji H (1993) Effects of 5-aminolevulinic acid on the accumulation of chlorophyll b and apoproteins of the light-harvesting chlorophyll a/b-protein complex of photosystem II. Plant Cell Physiol 34:465–472

    CAS  Google Scholar 

  • Van Hasselt PR, Strikwerda JT (1976) Pigment degradation in discs of the thermophilic Cucumis sativus as affected by light, temperature, sugar application and inhibitors. Plant Physiol 37:253–257

    Article  Google Scholar 

  • Van Huystee RB (1976) A study of peroxidase synthesis by means of double labeling and affinity chromatography. Can J Bot 54:876–880

    Article  Google Scholar 

  • Van Huystee RB (1977) Porphyrin and peroxidase synthesis in cultured peanut cells. Can J Bot 55:1340–1344

    Article  Google Scholar 

  • Von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057

    Article  Google Scholar 

  • Wang LJ, Jiang WB, Zhang Z, Yao QH, Matsui H, Ohara H (2003) Biosynthesis and physiological activities of 5-aminolevulinic acid (ALA) and its potential application in agriculture. Plant Physiol Commun 39:185–192

    Google Scholar 

  • Wang LJ, Jiang WB, Huang BJ (2004) Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedling under low light and chilling stress conditions. Physiol Plant 121:258–264

    Article  PubMed  CAS  Google Scholar 

  • Wang LJ, Jiang WB, Liu H, Liu WQ, Kang L, Hou XL (2005) Promotion by 5-aminolevulinic acid of germination of Pakchoi (Brassica camestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. J Integr Plant Biol 47(9):1084–1091

    Article  CAS  Google Scholar 

  • Wardman P, Candeias LP (1996) Fenton chemistry: an introduction. Radiat Res 145:523–531

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Tanaka T, Kuramochi H, Takeuchi Y (2000) Improving salt tolerance of cotton seedling with 5-aminolevulinic acid. Plant Growth Regul 32:97–101

    Article  Google Scholar 

  • Watanabe KE, Nishihara Watanabe S, Tanaka T, Takahashi K, Takeuchi Y (2006) Enhancement of growth and fruit maturity in 2-year-old Grapevines cv. Delaware by 5-aminolevulinic acid. Plant Growth Regul 49(1):35–42

    Article  CAS  Google Scholar 

  • Zivile L, Honorata D, Zivile T, Zilvinas A, Audrone M, Henrikas N (2006) New approach to the fungal decontamination of wheat used for wheat sprouts: effects of aminolevulinic acid. Int J Food Microbiol 116(1):153–158

    Google Scholar 

Download references

Acknowledgments

We are thankful to Jiangsu Province “Sixth Excellence Staff Program” for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Hou.

Additional information

Communicated by G. Bartosz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Memon, S.A., Hou, X., Wang, L. et al. Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). Acta Physiol Plant 31, 51–57 (2009). https://doi.org/10.1007/s11738-008-0198-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0198-7

Keywords

Navigation