Skip to main content

Advertisement

Log in

Effects of low night temperature on pigments, chl a fluorescence and energy allocation in two bitter gourd (Momordica charantia L.) genotypes

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Using two different inbred lines of Momordica charantia (bitter gourd), Y-106-5 and Z-1-4, the cell membrane stability, leaf water potential, pigment contents and the chlorophyll a fluorescence were investigated with different low night temperature (LNT) treatments over a 7 day time period and the sequent a 7 day recovery. Under LNT treatments, electrolyte leakage increased in both inbred lines and it increased more significantly in Y-106-5 plants than that in Z-1-4. The content of Chl b and total Chl decreased, while the Chl a/b ratio increased in stressed plants of the two lines. Almost all LNT treatments induced little change in Chl a content in Z-1-4 whereas obvious decreases in 5 and 8°C treated Y-106-5 plants were observed. Chilling changed the water status of plants and induced decreases of leaf water potential (LWP) in 5 and 8°C treated plants. LNT treatments also resulted in changes in the chlorophyll fluorescence parameters in bitter gourd leaves. The potential PSII activity (F v/F o) was reduced obviously by LNT stress and showed more sensitive to LNT than the maximum quantum efficiency of PSII primary photochemistry (F v/F m). The efficiency of open PSII centers \((F_{\rm v}^{\prime}/F_{\rm m}^{\prime})\) exhibited a slight decrease whereas the photochemical quenching efficient (q P) was affected more seriously by LNT stress in both two inbred lines. The allocation of energy was rearranged by LNT stress. The light fraction used for PSII photochemistry (P) was reduced, while that used for heat dissipation (D) and the third fraction of absorbed light defines excess energy (E) increased due to the chilling stress. The impacts of LNT stress on bitter gourd generally increased with the number of LNT chilling and the severe night chilling. Plants were little affected by 12°C night chilling and the most acute damage was found in 5°C night chilling treatments. A 7 day recovery mitigated the adverse effects of LNT for both lines and almost all LNT treated plants restored to control levels except 5°C night chilling treated Y-106-5 plants. The two lines have a variance in tolerance to LNT stress and display obvious differences of phenotypes under extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams WW, Demmig-Adams B, Verhoeven AS, Barker DH (1995) ‘Photoinhibition’ during winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust J Plant Physiol 22:261–276

    Article  CAS  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42. doi:10.1016/S1360-1385(00)01808-2

    Article  PubMed  CAS  Google Scholar 

  • Angelopoulos K, Dichio B, Xiloyannis C (1996) Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. J Exp Bot 47:1093–1100. doi:10.1093/jxb/47.8.1093

    Article  CAS  Google Scholar 

  • Babani F, Lichtenthaler HK (1996) Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, C02 assimilation rates and different kinds of chlorophyll fluorescence ratios. J Plant Physiol 48:555–566

    Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543. doi:10.1146/annurev.pp.31.060180.002423

    Article  Google Scholar 

  • Bertamini M, Muthuchelian K, Rubinigg M, Zorer R, Velasco R, Nedunchezhian N (2006) Low-night temperature increased the photoinhibition of photosynthesis in grapevine (Vitis vinifera L. cv. Riesling) leaves. Environ Exp Bot 57:25–31. doi:10.1016/j.envexpbot.2005.04.002

    Article  CAS  Google Scholar 

  • Bertamini M, Zulini L, Muthuchelian K, Nedunchezhian N (2007) Low night temperature effects on photosynthetic performance on two grapevine genotypes. Biol Plant 51:381–385. doi:10.1007/s10535-007-0080-2

    Article  CAS  Google Scholar 

  • Caramori LPC, Caramori PH, Manetti Filho J (2002) Effect of leaf water potential on cold tolerance of Coffea arabica L. Braz Arch Biol Technol 45:439–443

    Article  Google Scholar 

  • D’Ambrosio N, Arena C, De Santo AV (2006) Temperature response of photosynthesis, excitation energy dissipation and alternative electron sinks to carbon assimilation in Beta vulgaris L. Environ Exp Bot 55:248–257. doi:10.1016/j.envexpbot.2004.11.006

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams Iii WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264. doi:10.1034/j.1399-3054.1996.980206.x

    Article  CAS  Google Scholar 

  • Eamus D (1986) The responses of leaf water potential and leaf diffusive resistance to abscisic acid, water stress and low temperature in Hibiscus esculentus: the effect of water stress and ABA pre-treatments. J Exp Bot 37:1854–1862. doi:10.1093/jxb/37.12.1854

    Article  CAS  Google Scholar 

  • Ebrahim MKH, Vogg G, Osman M, Komor E (1998) Photosynthetic performance and adaptation of sugarcane at suboptimal temperatures. J Plant Physiol 153:587–592

    CAS  Google Scholar 

  • Feng YL, Cao KF (2005) Photosynthesis and photoinhibition after night chilling in seedlings of two tropical tree species grown under three irradiances. Photosynthetica 43:567–574. doi:10.1007/s11099-005-0089-8

    Article  CAS  Google Scholar 

  • Garstka M, Venema JH, Rumak I, Gieczewska K, Rosiak M, Koziol-Lipinska J, Kierdaszuk B, Vredenberg WJ, Mostowska A (2007) Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll–protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature. Planta 226:1165–1181. doi:10.1007/s00425-007-0562-7

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Huang M, Guo Z (2005) Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol Plant 49:81–84. doi:10.1007/s00000-005-1084-3

    Article  CAS  Google Scholar 

  • Huner NPA, quist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230. doi:10.1016/S1360-1385(98)01248-5

    Article  Google Scholar 

  • Jatimliansky JR, Garcia MD, Molina MC (2004) Response to chilling of Zea mays, Tripsacum dactyloides and their hybrid. Biol Plant 48:561–567. doi:10.1023/B:BIOP.0000047153.23537.26

    Article  Google Scholar 

  • Kornyeyev D, Logan BA, Holaday AS (2002) A chlorophyll fluorescence analysis of the allocation of radiant energy absorbed in photosystem 2 antennae of cotton leaves during exposure to chilling. Photosynthetica 40:77–84. doi:10.1023/A:1020150408908

    Article  CAS  Google Scholar 

  • Krause GH (1994) Effects of temperature on energy-dependent fluorescence quenching in chloroplasts. Photosynthetica 27:249–252

    Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi:10.1146/annurev.pp.42.060191.001525

    Article  CAS  Google Scholar 

  • Kudoh H, Sonoike K (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta 215:541–548. doi:10.1007/s00425-002-0790-9

    Article  PubMed  CAS  Google Scholar 

  • Li XG, Meng QW, Jiang GQ, Zou Q (2003) The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water–water cycle. Photosynthetica 41:259–265. doi:10.1023/B:PHOT.0000011959.30746.c0

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  • Lidon FC, Loureiro AS, Vieira DE, Bilhó EA, Nobre P, Costa R (2001) Photoinhibition in chilling stressed wheat and maize. Photosynthetica 39:161–166. doi:10.1023/A:1013726303948

    Article  CAS  Google Scholar 

  • Lootens P, Van Waes J, Carlier L (2004) Effect of a short photoinhibition stress on photosynthesis, chlorophyll a fluorescence, and pigment contents of different maize cultivars. Can a rapid and objective stress indicator be found? Photosynthetica 42:187–192. doi:10.1023/B:PHOT.0000040589.09614.a0

    Article  CAS  Google Scholar 

  • Lu S, Guo Z, Peng X (2003) Effects of ABA and S-3307 on drought resistance and antioxidative enzyme activity of turfgrass. J Hortic Sci Biotechnol 78:663–666

    CAS  Google Scholar 

  • Martin B, Ort DR, Boyer JS (1981) Impairment of photosynthesis by chilling-temperatures in tomato. Plant Physiol 68:329–334

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659

    Article  PubMed  CAS  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135. doi:10.1016/S1360-1385(99)01387-4

    Article  PubMed  Google Scholar 

  • Oberhuber W, Edwards GE (1993) Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 plants. Plant Physiol 101:507–512

    PubMed  CAS  Google Scholar 

  • Oxborough K, Baker NR (2000) An evaluation of the potential triggers of photoinactivation of photosystem II in the context of a Stern–Volmer model for downregulation and the reversible radical pair equilibrium model. Philos Trans R Soc Lond B Biol Sci 355:1489–1498. doi:10.1098/rstb.2000.0709

    Article  PubMed  CAS  Google Scholar 

  • Pastenes C, Horton P (1996) Effect of high temperature on photosynthesis in beans (I. oxygen evolution and chlorophyll fluorescence). Plant Physiol 112:1245–1251

    PubMed  CAS  Google Scholar 

  • Plazek A, Rapacz M, Hura K (2004) Relationship between quantum efficiency of PSII and cold-induced plant resistance to fungal pathogens. Acta Physiol Plant 26:141–148. doi:10.1007/s11738-004-0003-1

    Article  CAS  Google Scholar 

  • Rohacek K, Bartak M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339–363. doi:10.1023/A:1007172424619

    Article  CAS  Google Scholar 

  • Strauss AJ, Kruger GHJ, Strasser RJ, van Heerden PDR (2007) The role of low soil temperature in the inhibition of growth and PSII function during dark chilling in soybean genotypes of contrasting tolerance. Physiol Plant 131:89–105. doi:10.1111/j.1399-3054.2007.00930.x

    Article  PubMed  CAS  Google Scholar 

  • Sundar D, Ramachandra Reddy A (2001) Low night temperature-induced changes in photosynthesis and rubber accumulation in guayule (Parthenium argentatum Gray). Photosynthetica 38:421–427. doi:10.1023/A:1010990024506

    Article  Google Scholar 

  • Yu CW, Murphy TM, Sung WW, Lin CH (2002) H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean. Funct Plant Biol 29:1081–1087. doi:10.1071/PP01264

    Article  CAS  Google Scholar 

  • Zhou YH, Huang LF, Du YS, Yu JQ (2004a) Greenhouse and field cucumber genotypes use different mechanisms to protect against dark chilling. Funct Plant Biol 31:1215–1223. doi:10.1071/FP04045

    Article  CAS  Google Scholar 

  • Zhou YH, Yu JQ, Huang LF, Nogues S (2004b) The relationship between CO2 assimilation, photosynthetic electron transport and water–water cycle in chill-exposed cucumber leaves under low light and subsequent recovery. Plant Cell Environ 27:1503–1514. doi:10.1111/j.1365-3040.2004.01255.x

    Article  Google Scholar 

  • Zlatev ZS, Yordanov IT (2004) Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg J Plant Physiol 30:3–18

    CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Foundation for Key Program of 2004, Ministry of Education, China (Grant No. 104134). We are grateful to Chengxin Zhang, Junying Song and Zhongwei Yu for their assistance in the laboratory work on this project. Professor David H. Dyer, Que Lan, Zhibiao Ye and associate researcher Zhiwei Wang provide help in writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changping Xiang.

Additional information

Communicated by K. Trebacz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Kong, Q. & Xiang, C. Effects of low night temperature on pigments, chl a fluorescence and energy allocation in two bitter gourd (Momordica charantia L.) genotypes. Acta Physiol Plant 31, 285–293 (2009). https://doi.org/10.1007/s11738-008-0231-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0231-x

Keywords

Navigation